Electronic Supplementary Information

Complementary Behavior of Doping and Loading in Ag/C-ZnTa₂O₆ for Efficient Visible-light Photocatalytic Redox towards Broad Wastewater Remediation

Niri Wu, Ping Bai, Ting Yang, Hui Li, Jingyu Zhang, Zhanli Chai*, Xiaojing Wang

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China

1. Experimental

1.1. Synthesis of the contrast catalysts

Synthesis of C-ZnTa₂O₆ loaded with Au or Pt (Au/C-ZnTa₂O₆ and Pt/C-ZnTa₂O₆): 0.10 g of pre-prepared C-ZnTa₂O₆ powder was introduced into a quartz tube containing 20 mL deionized water and mixed with HAuCl₄·4H₂O (or H₂PtCl₆·6H₂O, the mass ratio of Au/Pt is 10 wt.%) for 30 min to form a suspension in the dark. And the mixture is continued to be agitated for 2 h under the xenon lamp (500 W) irradiation. The product was filtered and washed by water for three times. The final products were dried in an oven at 60 °C for further characterization.

*Preparation of Ag/C-ZnTa*₂*O*₆ *with different Ag contents:* 0.10 g of pre-prepared ZnTa₂O₆ powder was introduced into the diluted AgNO₃ solution (1.0 g/L, 5 mL/10 mL/15 mL) and mixed for 30 min to form a suspension in the dark. And the mixture is continued to be agitated for 2 h under the xenon lamp (500 W) irradiation. The product was filtered and washed by water for three times until NO₃⁻ was completely removed. The final products were dried in an oven at 60 °C. A series of Ag/ZnNb₂O₆ catalysts were obtained by setting up the initial Ag contents to 5 wt.%, 10 wt.%, and 15 wt.%, respectively.

*Synthesis of Ag/Na*₂*Ta*₂*O*₆: Typically, 0.266 g of tantalum hydroxide (Ta(OH)₅, 1.0 mmol), 0.20 g sodium hydroxide (NaOH, 5.0 mmol), and 15.0 mL of deionized water were added into round-bottom flask followed by 10 min stirring under room temperature. And then the above mixture was transferred into a 30 mL Teflon lined autoclave, which was heated at 220 °C for 24 h. And 0.10 g of obtained precipitate

was mixed with AgNO₃ solution (1.0 g/L, 10 mL, the initial content of Ag was set at 10 wt.%), and then followed the same procedure of Ag/C-ZnTa₂O₆.

*Synthesis of Ag/SiO*₂: 0.10 g of purchased SiO₂ powder was introduced into the diluted AgNO₃ solution (1.0 g/L, 10 mL, the initial content of Ag was set at 10 wt.%), , and then followed the same procedure of Ag/C-ZnTa₂O₆.

Fig. S1. XRD patterns of as-obtained products in typical synthesis with (a) different temperature, (b) duration, and (c) molar ratio of Ta_2O_5/ZnO .

Table S1. Carbon contents in C-ZnTa₂O₆ and Ag/C-ZnTa₂O₆ measured by XPS spectrum.

Catalysts	Carbon content/ wt.%
C-ZnTa ₂ O ₆	0.035
Ag/C-ZnTa ₂ O ₆	0.033

Fig. S2. (a) N_2 adsorption-desorption isotherms for as-synthesized pure $ZnTa_2O_6$, C- $ZnTa_2O_6$ and Ag/C- $ZnTa_2O_6$ in typical synthesis, and (b) schematic diagram of sample morphology and TEM images from pure $ZnTa_2O_6$ to C- $ZnTa_2O_6$ and then to Ag/C- $ZnTa_2O_6$.

Fig. S3. The photocatalytic degradation of HCl-TC with (a) $C-ZnTa_2O_6$ loaded with different noble metal (Pt, Au, Ag), (b) Ag/C-ZnTa₂O₆ catalyst with different loading content of Ag, (c) Ag loaded with different supporters (Na₂Ta₂O₆, SiO₂, C-ZnTa₂O₆) (d) removal efficiency of different photocatalysts under visible light irradiation.

Fig. S4. UV-vis absorption spectra of $Ag/C-ZnNb_2O_6$ with different initial loading content of silver.