Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2020

Studying the excited electronic states of Guanine rich DNA quadruplex by quantum mechanical methods: main achievements and perspectives.

Lara Martínez-Fernández, Luciana Esposito and Roberto Improta

Page	
1	
1	

Table S1. Vertical absorption energies and oscillator strengths for guanine with and without Na⁺ atom, by using the coordination geometry depicted below, with a distance of 1 or 2 Angstroms from the tetrad plane, computed at the TD-PCM-M052X/6-31G* level of theory.

		G/Na⁺ 1 Ū		G/Na⁺ 2 Å ^b		G	
		∆E (eV)	F	∆E (eV)	F	∆E (eV)	f
S ₁	ππ* (La)	5.13	0.19	5.17	0.19	5.23	0.18
S ₂	ππ* (Lb)	5.72	0.46	5.71	0.46	5.71 (S ₃)	0.45

Notes: a) distance from the carbonyl oxygen 2.3 Å. b) distance from the carbonyl oxygen 2.7 Å.

Figure S1. Computed Absorption Spectra (a) for a representative tetrad (b) varying the distance between the central ion (Na⁺ in blue and K⁺ in red) and the centre of the tetrad computed at the TD BCM MOEOX (6.21C*/MOEOX (6.21C*/MOEOX (6.21C*/MOEOX)).

