Supporting Information

Does degree of substitution on the cyclodextrin hosts impacts on their affinity towards guest binding?

Goutam Chakraborty^a, Alok K. Ray^{a,b}, Prabhat K. Singh^{b,c*} and Haridas Pal^{b*}

Figure S1: Binding isotherm of 3.5 μ M LDS-798 with β CD in the absence of 1M NaCl (red circle) and in the presence of 1M NaCl (blue square) using 1:1 binding model.

Figure S2: Binding isotherm of 1.5 µM LDS-722 with different host pH ~7, at 25 °C.

Figure S3: Normalized absorption spectra of (1) LDS-798 [$\lambda_{max} = 500$ nm] and LDS-798-cyclodextrin complexes under saturation condition; (2) β -CD [6.3 mM, $\lambda_{max} = 513$ nm], (3) DS~4 [200 μ M, $\lambda_{max} = 527$ nm], (4) DS~7 [100 μ M, $\lambda_{max} = 530$ nm] and (5) DS~10 [26 μ M, $\lambda_{max} = 534$ nm]. [LDS-798 concentration used 3.5 μ M, Temperature 25 °C, pH ~7]

Species	Quantum Yield ^s
LDS-798	0.002
LDS-798-βCD	0.012
LDS-798-SBE ₄ βCD	0.029
LDS-798-SBE ₇ βCD	0.034
LDS-798-SBE ₁₀ βCD	0.056

Table S1. Quantum yield of different LDS-798-SBE_nβCD complexes.

^{\$}Fluorescence quantum yield for LDS-798 was obtained from the literature.¹ The quantum yield values for the dye-host systems were estimated using the integrated area under the emission curve at saturated concentration of their respective binding isotherms, following comparison method.²

Table S2. Binding constant values for different LDS-722-SBE_nβCD complexes.

Complex	Binding constant (K _b) in M ⁻¹
LDS-722-SBE ₄ βCD	2.87 x 10 ⁴
LDS-722-SBE ₇ βCD	1.91 x 10 ⁵
LDS-722-SBE ₁₀ βCD	6.3 x 10 ⁵

Species	Quantum Yield ^s
LDS-722	0.01
LDS-722-SBE ₄ βCD	0.066
LDS-722-SBE ₇ βCD	0.073
LDS-722-SBE ₁₀ βCD	0.080

Table S3. Quantum yield of different LDS-722-SBE_nβCD complexes.

^sFluorescence quantum yield for LDS-798 was obtained from the literature³ The quantum yield values for the dye-host systems were estimated using the integrated area under the emission curve at saturated concentration of their respective binding isotherms, following comparison method.²

References

1. Sarkar, P.; Luchowski, R.; Raut, S.; Sabnis, N.; Remaley, A.; Lacko, A. G.; Thamake, S.; Gryczynski, Z.; Gryczynski, I. Studies on solvatochromic properties of aminophenylstyryl-quinolinum dye, LDS 798, and its application in studying submicron lipid based structure. *Biophys. Chem.* **2010**, *153*, 61–69.

2. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd Edition, Plenumm Press, Springer, New York**2006**.

Sola-Llano, R.; Martínez-Martínez, V.; Fujita, Y.; Gómez-Hortigüela, L.; Alfayate, A.; Uji-i, H.; Fron,
E.; Pérez-Pariente, J.; López-Arbeloa, I. Formation of a Nonlinear Optical Host–Guest Hybrid Material by Tight
Confinement of LDS 722 into Aluminophosphate 1D Nanochannels. *Chem. Euro. J.* 2016, *22*, 15700-15711.