Thiophene-phenylquinazoline Probe for Selective Ratiometric Fluorescence and Visual Detection of Fe (III) and Turn-Off Fluorescence for I⁻ and its Applications

Kannikanti Gavash Harsha a,b , Boddu. An
anda Rao *c , Tulsidas. R.Baggi *d , S.Prabhakar
* a,b and V. Jayathirtha Rao *e,b

^{a.} Dept. Of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India.

^{b.}AcSIR, (CSIR-HRDC) Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh- 201002, India.

^{c.}Department of Chemistry Osmania University, Hyderabad-500007, India.

^dFomerly ofCentral Forensic Science Laboratory, Ramanthapur, Hyderabad 500013, India.& Chemistry Dept., University college of Science, Osmania University, Hderabad 500007, India.

^eFluoro Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road Tanaka, Hyderabad 500007, India.

Figure captions and figure numbers	Page
NMR and Mass spectra of BQT (Figs. S1-S4)	S2, S3
Benesi-Hildebrand plots to determine binding constants for BQT-Fe ³⁺	S4
(Fig.S5)	
Linearity curve from fluorescence titration for BQT-Fe ³⁺ complex (Fig.S6)	S4
Linearity curve from UV-Vis titration for BQT-Fe ³⁺ complex (Fig. S7)	S5
Job's plot of BQT-Fe ³⁺ complex (Fig. S8)	S6
Reversible cycles of absorption at 420 nm upon addition of Fe^{3+} and EDTA	S6
alternatively in CH ₃ CN solution of BQT.(Fig. S9)	
The absorbance (a) spectra of I ⁻ titration (0-1100µM) Insets: absorbance at	S 7
362 nm Vs concentration of I ⁻ and fluorescence (b) spectra of I ⁻ titration	
(0-900 μ M) Insets: intensity at 426 nm Vs concentration of I ⁻ with the BQT	
(10 µM). Excitation wavelength is 362nm.(Fig. S10)	
Stern-Volmer plot for BQT quenching upon addition of iodide ion, here I_0	S 7
= BQT intensity without I ⁻ ion and I = intensity with I ⁻ ion. (Fig. S11)	
Job's plot of BQT-I complex. (Fig. S12)	S 8
Linearity curve from fluorescence titration for BQT-I ⁻ complex (Fig. S13)	S 8

Fig. S1: ¹H NMR spectrum of BQT

Fig. S2: ¹³C NMR spectrum of BQT

Fig. S3: ESI-Mass spectrum of BQT

Fig. S4: ESI-HR Mass spectrum of BQT

Fig. S5: Benesi–Hildebrand plots to determine binding constants for BQT-Fe³⁺ Binding constant was calculated using the following equation Binding constant = Intercept/ Slope The calculated binding constant for BQT-Fe³⁺ is $4.1x \ 10^{-4} \ M^{-1}$

LOD = $3\sigma/S$, where σ is the standard deviation and S is the slope of the linearity curve. σ is 0. 21 and S = 3.05603E7. LOD is 2.0 x 10^{-8} M. LOQ = $3 \times LOD = 6.1 \times 10^{-8}$ M. **Fig. S6**: Linearity curve from fluorescence titration for BQT-Fe³⁺ complex

LOD = $3\sigma/S$, where σ = standard deviation and S = slope of the linearity curve. S = 57870.3636 and σ is 0.00092. LOD of BQT for Fe = 1.6e-8 M & LOQ of BQT for Fe = 4.8e-8 M

Fig. S7: Linearity curve from UV-Vis titration for BQT-Fe³⁺ complex

Fig. S8: Job's plot of BQT-Fe³⁺ complex

Fig. S9: Reversible cycles of absorption at 420 nm upon addition of Fe^{3+} and EDTA alternatively in CH₃CN solution of BQT.

Fig. **S10**: The absorbance (**a**) spectra of I⁻ titration (0-1100 μ M) Insets: absorbance at 362 nm Vs concentration of I⁻ and fluorescence (**b**) spectra of I⁻ titration (0-900 μ M) Insets: intensity at 426 nm Vs concentration of I⁻ with the BQT (10 μ M). Excitation wavelength is 362nm.

*Fig.*S11:Stern-Volmer plot for BQT quenching upon addition of iodide ion, here $I_0 = BQT$ intensity without I⁻ ion and I = intensity with I⁻ ion.

Fig.S12: Job's plot of BQT-I complex.

 $LOD = 3\sigma/S$, where $\sigma =$ standard deviation and S = slope of the linearity curve. σ is 0.12 and S = 2083940. LOD of BQT for $I = 1.7x10^{-7}$ & LOQ of BQT for $I = 5.2x10^{-7}$ **Fig. S13**: Linearity curve from fluorescence titration for BQT- I complex