Electronic Supplementary Information

Fluorescent detection of pyrene-stained *Bacillus subtilis* LPM1 rhizobacteria from colonized patterns of tomato roots

Mónica Hernández^a, Randy Ortiz-Castro^b, Alberto Flores-Olivas^c, Ivana Moggio^a, Eduardo Arias^{*a} and José Humberto Valenzuela-Soto^{*d}

Content

I. Experimental procedures.

II. ¹H NMR spectra.

III. Chemotaxis assays.

IV. Root colonization assays.

^aCentro de Investigación en Química Aplicada, Boulevard Enrique Reyna Hermosillo 140, Saltillo, C.P. 25294, Coahuila, México. E-mail: eduardo.arias@ciqa.edu.mx, Tel: +52 844 438 9830

^bRed de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, C.P. 91070, Veracruz, México. ^cDepartamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo, C.P. 25315, Coahuila, México

^dCONACYT-Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna Hermosillo 140, Saltillo, C.P. 25294, Coahuila, México. E-mail: humberto.valenzuela@ciga.edu.mx, Tel: +52 844 438 9830

I. Experimental procedures.

Chemicals. The following chemical products were obtained from Aldrich and used without further purification: 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, propargyl bromide, N,N-diisopropylethylamine (DIPEA), 1-bromoundecane, 11-bromoundecanoic acid. All of the solvents such as CH₂Cl₂, CHCl₃, N-methylpyrrolidone, hexanes, methanol, were purchased from Aldrich, Baker or ASLO Reactivos. All solvents used for optical characterization were spectroscopic grade from Aldrich.

Synthesis of methyl 11-bromoundecanoate: A round bottomed flask was charged with 5g (18.85 mmol) of 11-bromoundecanoic acid, 30 mL of methanol and 0.40 mL (7.54 mmol) of sulfuric acid. The mixture is heated to 80°C for 4 h. After cooling, the solvent is removed under vacuum, and then a solution of NaHCO₃ is added, until a pH of 7 is reached. The organic phase is extracted with hexanes (3X), dried with MgSO₄, filtered and concentrated, to give a colorless liquid in 95 % yield. ¹H NMR (CDCl₃, 300 MHz) δ (ppm) 3.67 (s, 3H, CH₃), 3.41 (t, 2H, Br-CH₂), 2.31 (t, 2H, CH₂- α -CO), 1.85 (m, 2H, CH₂- β -Br), 1.62 (m, 2H, CH₂- β -CO), 1.42 (m, 4H, CH₂- γ -Br, CH₂- γ -CO), 1.29 (s, 8H, -CH₂).

General procedure for Williamson alkylations of 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt: A round bottomed flask was charged with 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (**M**), the alkylating agent and 30 mL of dry methanol. The mixture under nitrogen is heated to 70 °C and then DIPEA is added via syringe and let to react for 7 days. After cooling, the solvent is removed under vacuum, the product is dissolved in the minimum amount of methanol and precipitated in CH_2Cl_2 and then in acetone, filtrated and passed by flash silica gel chromatography.

Synthesis of sodium 8-((methyl 10-undecanoate)oxy)pyrene-1,3,6-trisulfonate: Applying the general procedure for the Williamson alkylations of M: 600 mg (1.14 mmol) of M, 30 mL methanol, 2.05 g (7.32 mmol) of methyl 11-bromoundecanoate and 458 mg (0.62 mL, 3.55 mmol) of DIPEA. The crude product is precipitated in CH₂Cl₂ and then in acetone, filtrated and purified by flash chromatography (SiO₂, CHCl₃, and then CHCl₃:MEOH 1:1 v/v) to obtain a beige powder in 87 % yield. ¹H NMR (300 MHz, DMSO-*d*6) δ 9.10 (d, *J* = 9.6 Hz, 1Hpyr), 9.03 (d, *J* = 9.9 Hz, 1Hpyr), 9.03 (s, 1Hpyr), 8.95 (d, *J* = 9.9 Hz, 1Hpyr), 8.38 (d, *J* = 9.6 Hz, 1Hpyr), 8.20 (s, 1Hpyr), 4.36 (t, 2H, CH₂-α-O), 3.56 (s, 3H, COOCH₃),

2.28 (t, 2H, CH₂-α-COO), 1.96 (m, 2H, CH₂-β-O), 1.59 (m, 2H, CH₂-β-COO), 1.51 (m, 2H, CH₂-γ-O), 1.40 (m, 2H, CH₂-γ-COO), 1.28 (bs, 8H, -CH₂-).

Synthesis of sodium 8-((10-carboxydecyl)oxy)pyrene-1,3,6-trisulfonate (M1): To a round bottom flask containing 850 mg (0.463 mmol) of sodium 8-((11-methoxy-11- oxoundecyl) oxy) pyrene-1,3,6-trisulfonate and 20 mL of methanol, were added 9.79 mL of NaOH-0.48 M solution (4 equiv., 188 mg de NaOH). The mixture was stirred at 40-50 °C for 2d. Once cool, the solution was acidified with HCl-1M, up to reach a pH of 2. The methanol is evaporated and to the syrup is added acetone, the formed precipitated is filtered off, dried overnight in an oven to obtain a pale yellow powder in 91 % yield. ¹H NMR (300 MHz, DMSO-*d*6) δ 11.99 (bs, 1H, -COOH), 9.11 (d, J = 9.6, Hz, 1Hpyr), 9.02 (d, J = 9.7 Hz, 1Hpyr), 9.03 (s, 1H pyr), 8.94 (d, J = 9.9 Hz, 1Hpyr), 8.37 (d, J = 9.6 Hz, 1Hpyr), 8.19 (s, 1Hpyr), 4.35 (t, 2H, CH₂-α-O), 2.19 (t, 2H, CH₂-α-COO), 1.96 (m, 2H, CH₂-β-O), 1.59 (m, 2H, CH₂-β-COO), 1.49 (m, 2H, CH₂-γ-O), 1.41 (m, 2H, CH₂-γ-COO), 1.28 (bs, 8H, -CH₂-). Synthesis of sodium 8-(undecyloxy)pyrene-1,3,6-trisulfonate (M2): Applying the general procedure for the Williamson alkylations of M: 150 mg (0.286 mmol) of M, 25 mL of methanol, 470 mg (2.0 mmol) of 1-bromoundecane and 115 mg (0.16 mL, 0.886 mmol) of DIPEA. The crude product is precipitated in CH₂Cl₂ and then in acetone, filtrated and purified by flash chromatography (SiO₂, CHCl₃, and then CHCl₃:MEOH 1:1 v/v) to obtain a beige powder in 85 % yield. ¹H NMR (300 MHz, DMSO-*d*6) δ 9.11 (d, *J* = 9.6 Hz, 1Hpyr), 9.03 (d, J = 9.9 Hz, 1Hpyr), 9.02 (s, 1Hpyr), 8.94 (d, J = 9.9 Hz, 1Hpyr), 8.37 (d, J = 9.6 Hz, 1Hpyr), 8.19 (s, 1Hpyr), 4.35 (t, 2H, CH₂-α-O), 1.96 (m, 2H, CH₂-β-O), 1.59 (m, 2H, CH₂γ-O), 1.42 (m, 2H, CH₂-β-CH₃), 1.25 (bs, 12H, -CH₂-), 0.84 (t, 3H, CH₃).

Synthesis of sodium 8-(prop-2-yn-1-yloxy)pyrene-1,3,6-trisulfonate (M3): Applying the general procedure for the Williamson alkylations of M: 300 mg (0.572 mmol) of M, 35 mL of methanol, 176 mg (4.0 mmol) of 1-bromopropargyl and 229 mg (0.309 mL, 1.77 mmol) of DIPEA. The crude product is precipitated in CH₂Cl₂ and then in acetone, filtrated and purified by flash chromatography (SiO₂, CHCl₃, and then CHCl₃:MEOH 1:1 v/v) to obtain a pale brown powder in 72 % yield. ¹H NMR (300 MHz, DMSO-d6) δ 9.14 (d, *J* = 9.6 Hz, 1Hpyr), 9.07 (d, *J* = 9.9 Hz, 1Hpyr), 9.06 (s, 2Hpyr), 8.99 (d, *J* = 9.9 Hz, 1Hpyr), 8.37 (d, *J* = 9.6 Hz, 1Hpyr), 8.39 (s, 1Hpyr), 5.20 (s, 2H, CH₂-=), 3.65 (s, 1H, H-=).

II.¹H Nuclear Magnetic Resonance spectra

Figure S1. ¹H NMR spectra of sodium 8-((methyl 10-undecanoate)oxy)pyrene-1,3,6trisulfonate in DMSO- *d6.* *Residual DMSO and **water.

Figure S2. ¹H NMR spectra of sodium 8-((10-carboxydecyl)oxy)pyrene-1,3,6-trisulfonate (**M1**) in DMSO-*d*6. *Residual DMSO and **water.

Figure S3. ¹H NMR spectra of sodium 8-(undecyloxy) pyrene-1,3,6-trisulfonate (M2) in DMSO-*d*6. *Residual DMSO and **water.

Figure S4. ¹H NMR spectra of sodium 8-(prop-2-yn-1-yloxy) pyrene-1,3,6-trisulfonate (**M3**) in DMSO-*d*6. *Residual DMSO and **water.

Figure S5. Chemotaxis assay of *Bacillus subtilis* LPM1 in plates with M9-medium supplemented with different organic acids at different concentrations (50, 75 and 100 μ M): fumaric acid (FA), malic acid (MA), oxalic acid (OA), succinic acid (SA), citric acid (CA), and control water.

Figure S6. Chemotaxis assay of *Bacillus subtilis* PY79 in plates with M9-medium supplemented with different organic acids at different concentrations (50, 75 and 100 μ M): fumaric acid (FA), malic acid (MA), oxalic acid (OA), succinic acid (SA), citric acid (CA), and control water.

Figure S7. Chemotaxis assay of *Escherichia coli* DH5 α in plates with M9-medium supplemented with different organic acids at different concentrations (50, 75 and 100 μ M): fumaric acid (FA), malic acid (MA), oxalic acid (OA), succinic acid (SA), citric acid (CA), and control water.

	30 min	60 min	90 min	120 min	150 min	180 min
	[CFU mL ⁻¹]					
MA	1.0 x10 ⁷	4.0 x10 ⁷	1.2 x10 ⁸	1.7 x10 ⁹	2.0 x10 ⁹	2.9 x10 ⁹
FA	1.0 x10 ⁷	1.0 x10 ⁷	6.0 x10 ⁷	2.1 x10 ⁸	1.1 x10 ⁹	1.7 x10 ⁹
СА	0	0	0	6.0 x10 ⁷	2.4 x10 ⁸	3.4 x10 ⁹
ΟΑ	1.0 x10 ⁷	1.0 ×10 ⁷	1.0 x10 ⁷	8.0 x10 ⁷	5.5 x10 ⁸	2.0 x10 ⁹
SA	0	0	0	3.7 x10 ⁸	3.9 x10 ⁸	2.2 x10 ⁹
С	0	0	0	0	0	0

Table S1. Chemotaxis assay of *Bacillus subtilis* PY79 in capillary tubes with M9-medium supplemented with different organic acids. Malic acid (MA), fumaric acid (FA), citric acid (CA), oxalic acid (OA), succinic acid (SA), and control (C).

Table S2. Chemotaxis assays of *Escherichia coli* DH5α in capillary tubes with M9-medium supplemented with different organic acids. Malic acid (MA), fumaric acid (FA), citric acid (CA), oxalic acid (OA), succinic acid (SA), and control (C).

	30 min	60 min	90 min	120 min	150 min	180 min
	[CFU mL ⁻¹]					
MA	1.0 x10 ⁷	9.0 x10 ⁷	2.1 x10 ⁸	9.3 x10 ⁸	9.7 x10 ⁸	1.2 x10 ⁹
FA	2.0 x10 ⁷	8.0 x10 ⁷	9.0 x10 ⁷	1.0 x10 ⁸	1.6 x10 ⁸	2.6 x10 ⁸
C۵	0	5 0 x10 ⁷	7 0 x10 ⁷	9 0 x10 ⁷	6 1 x10 ⁸	2 1 x10 ⁸
C/Y	0	5.6 / 10	7.0 / 10	5.6 110	0.1 ×10	2.1 /10
0.4	0	7.0×10^{7}	8 0 v10 ⁷	1 7 108	8 2 v108	1 7 1 09
UA	U	7.0 X10 ²	8.0 X10 ⁷	1.7 X10°	8.3 X10°	1.7 X10 ³
		· · -				
SA	1.0×10^{7}	6.0 x10 ⁷	5.3 x10 ⁸	7.0 x10 ⁸	1.3 x10 ⁹	1.4 x10 ⁹
С	0	0	0	0	0	0

IV. Root colonization assays

Tomato seeds from three varieties (*Solanum lycopersicum* cv. Micro-Tom, *S. lycopersicum* cv. Floradade and *S. lycopersicum* cv. Wild) were germinated in Peat-moss for two weeks. Seedlings of three varieties of tomato were inoculated with *B. subtilis* LPM1 (approximately 10⁸ CFU/mL) and were transplanted in 1.5 L pots containing peat-moss:perlite (70:30 v/v) as described in Experimental section. After 28 days, all of the roots were exposed in the M1 marker solution with agitation (150 rpm) at 30°C for 24 hours. Finally, roots were observed by LSCM with the same conditions described in the experimental section.

Figure S8. LSCM images of root colonisation patterns by *B. subtilis* LPM1 in three varieties of tomato plants: *Solanum lycopersicum* cv. Micro-Tom (MT), *S. lycopersicum* cv. Floradade (FD), and Wild *S. lycopersicum* cv. (WT). Roots treated with LPM1 strain and M1 marker (LPM1 + M1), roots treated with LPM1strain (LPM1), roots treated with M1 marker (M1), and roots control water (C). Left images: fluorescence channel and right images: reflection channel.