Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2020

Supporting Information to Paper

E.M. Glebov, S.G. Matveeva, I.P. Pozdnyakov, V.P. Grivin, V.F. Plyusnin, D.B. Vasilchenko, T.E. Romanova,

A.A. Melnikov, S.V. Chekalin, R.G. Fedunov

Photochemistry of Hexachloroosmate(IV) in Ethanol

Figure S1. The approximate structure of molecular orbitals of the $Os^{IV}Cl_6^{2-}$ complex according to [39] (non-relativistic approximation). Arrows correspond to the LMCT (red) and d-d (blue) transitions.

Lower filled orbitals are not shown

[39] C.K. Jørgensen, Mol. Phys., 1959, 2, 309.

Figure S2. Example of raw data used for calculation of the $Os^{IV}Cl_5(C_2H_5OH)^-$ electronic absorption spectra from the experiment on the stationary photolysis (313 nm) of $Os^{IV}Cl_6^{2-}$ in ethanol.

Figure S3. Laser flash photolysis (355 nm) of $Os^{IV}Cl_6^{2-}$ in ethanol (1.27×10⁻⁴ M, 1 cm cell). Dependence of intermediate absorption amplitude vs. laser pulse energy.

Table S1. Electronic and geometric structure of $Os^{IV}Cl_6^{2-}$ (Figure S4). Multiplicity, M; bond lengths, $R_{OsCl(i)}$; bond angles, $\angle Cl(6)OsCl(i)$, $\angle Cl(1)OsCl(3)$, $\angle Cl(3)OsCl(4)$, $\angle Cl(4)OsCl(5)$, $\angle Cl(5)OsCl(1)$; atom charges, q_{Os} , $q_{Cl(6)}$, $q_{Cl(7)}$, $q_{Cl(i)}$, i=1,3,4,5; total energy, E_0 ; Gibbs free energy, E_G .

Nº	OsCl ₆ -2 conf.	M	R _{OsCl(6)} , R _{OsCl(7)}	$ \begin{array}{c} R_{OsCl(i)}, \\ i=1,3,4, \\ 5 \end{array} $	$\angle Cl(6)OsCl(i)$ <i>i</i> =1,3,4,5	$ \begin{array}{c} \angle Cl(1)OsCl(3) \\ \angle Cl(3)OsCl(4) \\ \angle Cl(4)OsCl(5) \\ \angle Cl(5)OsCl(1) \end{array} $	q _{Os}	q _{Cl(6)} , q _{Cl(7)} ,	q _{Cl(i)} , <i>i</i> =1,3,4 ,5	E ₀ , Hartree, eV	$E_G,$ Hartree, eV
Gas				·		·	•		•	•	
1	4GBP	1	2.406 2.406	2.406 2.406 2.406 2.406	90.33 90.33 89.67 89.67	90.33 89.67 90.33 89.67	0.311	-0.385 -0.385	-0.385 -0.385 -0.385 -0.385	-2850.880288 -77576.39	-2850.913736 -77577.35
2	4GBP	3	2.409 2.409	2.409 2.409 2.409 2.409 2.409	90.03 90.03 89.97 89.97	89.97 90.03 89.97 90.03	0.364	-0.394 -0.394	-0.394 -0.394 -0.394 -0.394	-2850.914871 -77577.34	-2850.949416 -77578.32
3	4GBP	5	2.382 2.382	2.722 2.382 2.722 2.382	90.00 90.00 90.00 90.00 90.00	90.00 90.00 90.00 90.00	0.475	-0.351 -0.351	-0.536 -0.351 -0.536 -0.351	-2850.872433 -77576.18	-2850.907954 -77577.20
Eth	anol		•	•		•		•		•	
4	4GBP	1	2.388 2.388	2.392 2.389 2.392 2.389	90.37 90.27 89.63 89.73	90.32 89.68 90.32 89.68	0.221	-0.369 -0.369	-0.372 -0.369 -0.372 -0.369	-2851.155399 -77583,93	-2851.188756 -77584.84
5	4GBP	3	2.386 2.386	2.407 2.385 2.407 2.385	90.05 89.91 89.95 90.09	90.01 89.99 90.01 89.99	0.274	-0.369 -0.369	-0.400 -0.368 -0.400 -0.368	-2851.190042 -77584.82	-2851.224271 -77585.80
6	4GBP	5	2.368 2.368	2.685 2.368 2.685 2.368	89.98 90.00 90.02 90.00	90.00 90.00 90.00 90.00 90.00	0.394	-0.326 -0.326	-0.545 -0.326 -0.545 -0.326	-2851.144475 -77583.58	-2851.180215 -77584.61

Figure S4. Optimal geometry of Os^{IV}Cl₆²⁻ complex (tetragonal bipyramidal – 4GBP).

Table S2. Electronic and geometric structure of $Os^{IV}Cl_5^-$ (Figure S5(a,b)). Multiplicity, M; bond lengths, $R_{OsCl(6)}$, $R_{OsCl(i)}$; bond angles, $\angle Cl(6)OsCl(i)$, $\angle Cl(1)OsCl(3)$, $\angle Cl(3)OsCl(4)$, $\angle Cl(4)OsCl(5)$, $\angle Cl(5)OsCl(1)$; atom charges, q_{Os} , $q_{Cl(6)}$, $q_{Cl(i)}$, i=1,3,4,5; total energy, E_0 ; Gibbs free energy, E_G .

Nº	OsCl ₅ -1 conf.	M	R _{OsCl(6)}	$R_{OsCl(i)}, i=1,3,4, 5$	$\angle Cl(6)OsCl(i)$ <i>i</i> =1,3,4,5	$ \begin{array}{ c c c } \hline & \angle Cl(1)OsCl(3) \\ \hline & \angle Cl(3)OsCl(4) \\ \hline & \angle Cl(4)OsCl(5) \\ \hline & \angle Cl(5)OsCl(1) \end{array} $	q _{Os}	q _{C1(6)}	q _{Cl(i)} , <i>i</i> =1,3,4 ,5	E ₀ , Hartree, eV	E _G , Hartree, eV
Gas	5										
1	4GP	1	2.338	2.344 2.344 2.344 2.344	93.21 93.21 93.21 93.21 93.21	89.82 89.82 89.82 89.82 89.82	0.336	-0.259	-0.269 -0.269 -0.269 -0.269	-2390.878933 -65059.12	-2390.908663 -65059.97
2	3GBP	1	2.262	2.400 2.262 2.400 2.262	93.35 119.55 86.62 119.73	93.44 86.63 86.60 93.36	0.361	-0.191	-0.378 -0.191 -0.411 -0.191	-2390.892706 -65059.50	-2390.924571 -65060.41
3	4GP	3	2.286	2.385 2.326 2.385 2.326	92.26 101.72 92.26 101.72	89.54 89.54 89.54 89.54	0.401	-0.200	-0.335 -0.265 -0.335 -0.265	-2390.910591 -65059.98	-2390.942791 -65060.90
4	4GP	5	2.471	2.347 2.347 2.347 2.347	98.51 98.51 98.51 98.51 98.51	88.75 88.75 88.75 88.75 88.75	0.481	-0.348	-0.283 -0.283 -0.283 -0.283	-2390.912141 -65060.03	-2390.944665 -65060.95
Eth	anol										
5	4GP	1	2.336	2.341 2.341 2.341 2.341	92.78 92.80 92.73 92.81	89.85 89.87 89.88 89.85	0.342	-0.277	-0.266 -0.266 -0.266 -0.266	-2390.952225 -65061.12	-2390.983240 -65062.00
6	3GBP	1	2.250	2.423 2.250 2.442 2.250	90.98 119.83 88.99 120.03	91.03 89.06 88.99 90.95	0.338	-0.159	-0.423 -0.159 -0.438 -0.159	-2390.968678 -65061.56	-2391.000797 -65062.48
7	4GP	3	2.284	2.386 2.320 2.386 2.320	91.93 100.85 91.90 100.86	89.63 89.65 89.65 89.63	0.397	-0.191	-0.351 -0.253 -0.351 -0.253	-2390.983761 -65061.98	-2391.016657 -65062.91
8	4GP	5	2.484	2.341 2.341 2.341 2.341	97.91 97.93 97.85 97.93	88.91 88.92 88.92 88.91	0.461	-0.372	-0.272 -0.272 -0.272 -0.272 -0.272	-2390.983174 -65061.96	-2391.017112 -65062.92

Figure S5. Optimal geometry of $Os^{IV}Cl_5^-$ intermediate in (a) singlet (trigonal bipyramidal – 3GBP), (b) triplet and quintet states (square pyramidal – 4GP).

Table S3. Electronic and geometric structure of $Os^{IV}Cl_5(C_2H_5O)^{2-}$ (Figure S6a). Multiplicity, M; bond lengths, $R_{OsCl(i)}$; bond angles, $\angle Cl(6)OsCl(i)$, $\angle Cl(1)OsCl(3)$, $\angle Cl(3)OsCl(4)$, $\angle Cl(4)OsCl(5)$, $\angle Cl(5)OsCl(1)$; atom charges, q_{Os} , $q_{Cl(6)}$, $q_{Cl(7)}$, $q_{Cl(i)}$, i=1,3,4,5; total energy, E_0 ; Gibbs free energy, E_G .

Nº	$\begin{array}{c} Os^{IV}Cl_5\\ (C_2H_5O)^{2-}\\ conf. \end{array}$	М	R _{OsCl(6)} , R _{OsO(7)}	$ \begin{array}{c} R_{OsCl(i)}, \\ i=1,3,4, \\ 5 \end{array} $	$\angle Cl(6)OsCl(i)$ <i>i</i> =1,3,4,5	$ \begin{array}{c} \angle Cl(1)OsCl(3) \\ \angle Cl(3)OsCl(4) \\ \angle Cl(4)OsCl(5) \\ \angle Cl(5)OsCl(1) \end{array} $	q _{Os}	q _{Cl(6)} , q _{O(7)}	q _{Cl(i)} , <i>i</i> =1,3,4 ,5	E ₀ , Hartree, eV	E _G , Hartree, eV
Gas	Gas										
1	4GP	1	2.399 1.920	2.431 2.448 2.465 2.431	90.41 90.71 90.36 89.91	91.67 88.06 91.54 88.72	0.411	-0.376 -0.440	-0.419 -0.435 -0.439 -0.419	-2545.099720 -69255.68	-2545.066804 -69254.83
2	4GP	3	2.399 1.954	2.424 2.446 2.455 2.427	91.17 90.56 90.31 91.05	90.35 89.31 90.16 90.13	0.482	-0.386 -0.483	-0.415 -0.431 -0.429 -0.420	-2545.123428 -69256.33	-2545.091926 -69255.51
3	4GP	5	2.381 1.941	2.686 2.412 2.878 2.398	93.03 90.04 92.31 90.42	91.73 87.17 89.14 91.91	0.589	-0.363 -0.486	-0.523 -0.387 -0.558 -0.375	-2545.083907 -69255.25	-2545.054976 -69254.51
Eth	anol				•					•	
4	4GP	1	2.411 1.900	2.420 2.420 2.426 2.426 2.426	90.28 90.33 89.36 89.28	89.90 91.34 88.38 91.37	0.297	-0.404 -0.448	-0.413 -0.413 -0.434 -0.434	-2545.382415 -69263.37	-2545.349389 -69262.52
5	4GP	3	2.406 1.924	2.420 2.424 2.422 2.420	90.30 89.88 89.93 90.39	90.31 89.63 90.11 89.94	0.391	-0.400 -0.500	-0.427 -0.428 -0.422 -0.429	-2545.400103 -69263.85	-2545.368270 -69263.03
6	4GP	5	2.383 1.919	2.688 2.403 2.741 2.401	91.31 89.82 90.48 90.13	91.00 88.48 89.99 90.53	0.511	-0.367 -0.501	-0.555 -0.380 -0.557 -0.380	-2545.356673 -69262.67	-2545.327601 -69261.93

Table S4. Electronic and geometric structure of $Os^{IV}Cl_5(C_2H_5OH)^-$ (Figure S6(b-c)). Multiplicity, M; bond lengths, $R_{OsCl(i)}$; bond angles, $\angle Cl(6)OsCl(i)$, $\angle Cl(1)OsCl(3)$, $\angle Cl(3)OsCl(4)$, $\angle Cl(4)OsCl(5)$, $\angle Cl(5)OsCl(1)$; atom charges, q_{Os} , $q_{Cl(6)}$, $q_{Cl(7)}$, $q_{Cl(i)}$, i=1,3,4,5; total energy, E_0 ; Gibbs free energy, E_G .

Nº	OsCl ₅ -1 conf.	M	$\begin{array}{c} R_{OsCl(6)}, \\ R_{OsO(7)}, \\ R_{Cl(1)H(8)}, \\ R_{Cl(3)H(8)} \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\angle Cl(6)OsCl(i)$ <i>i</i> =1,3,4,5		q _{Os}	qC1(6), qO(7), qH(8)	q _{Cl(i)} , <i>i</i> =1,3,4 ,5	E ₀ , Hartree, eV	E _G , Hartree, eV
Gas						•		•			
1	3GBP	1	2.263 4.784 3.880 2.259	2.258 2.482 2.261 2.377	119.76 85.87 120.00 93.82	86.12 86.26 93.86 94.06	0.379	-0.183 -0.353 0.152	-0.380 -0.175 -0.345 -0.172	-2545.742537 -69273.18	-2545.700406 -69272.07
2	4GP	3	2.320 2.216 2.255 3.404	2.431 2.337 2.387 2.367	95.88 94.43 90.39 93.31	89.87 90.73 90.00 88.56	0.386	-0.252 -0.305 0.189	-0.356 -0.266 -0.316 -0.295	-2545.776641 -69274.10	-2545.731486 -69272.92
3	4GP	5	2.461 4.169 2.317 3.850	2.379 2.348 2.334 2.336	98.08 98.21 99.32 98.53	88.16 89.14 89.38 88.27	0.484	-0.329 -0.340 0.162	-0.297 -0.264 -0.260 -0.261	-2545.754489 -69273.50	-2545.714944 -69272.46
Eth	anol										
4	4GP	1	2.320 2.161 2.491 3.206	2.395 2.346 2.434 2.330	93.55 95.71 87.98 97.33	92.90 86.19 86.65 93.90	0.311	-0.265 -0.316 0.243	-0.363 -0.268 -0.386 -0.256	-2545.829803 -69275.55	-2545.784540 -69274.36
5	4GP	3	2.344 2.125 3.466 2.652	2.351 2.399 2.358 2.399	92.23 93.45 91.97 90.58	90.00 90.03 90.00 89.91	0.362	-0.304 -0.339 0.250	-0.290 -0.363 -0.293 -0.354	-2545.862640 -69276.44	-2545.818314 -69275.28
6	4GP	5	2.511 2.973 2.632 3.770	2.362 2.340 2.344 2.348	96.92 95.97 97.71 95.14	89.24 89.52 89.34 89.07	0.436	-0.389 -0.327 0.197	-0.295 -0.269 -0.269 -0.274	-2545.825964 -69275.44	-2545.786001 -69274.40

Figure S6. Optimal geometries of $Os^{IV}Cl_5(C_2H_5O)^{2-}$ complex in (**a**) singlet, triplet, quintet states and $Os^{IV}Cl_5(C_2H_5OH)^{-}$ complex in (**b**) singlet, triplet, quintet states (ethanol) and (**c**) singlet, quintet states (gas phase).

Table S5. Electronic and geometric structure of $Os^{III}Cl_4^-$ (Figure S7). Multiplicity, M; bond lengths, $R_{OsCl(i)}$; bond angles, $\angle Cl(1)OsCl(3)$, $\angle Cl(3)OsCl(4)$, $\angle Cl(4)OsCl(5)$, $\angle Cl(5)OsCl(1)$; atom charges, q_{Os} , $q_{Cl(i)}$, i=1,3,4,5; total energy, E_0 ; Gibbs free energy, E_G .

Nº	OsCl ₄ -1 conf.	М	$R_{OsCl(i)},$ <i>i</i> =1,3,4,5	$ \angle Cl(1)OsCl(3) \angle Cl(3)OsCl(4) \angle Cl(4)OsCl(5) \angle Cl(5)OsCl(1) $	q _{Os}	q _{Cl(i)} , <i>i</i> =1,3,4,5	E ₀ , Hartree, eV	E _G , Hartree, eV		
Gas	6									
1	4PL	2	2.336, 2.323, 2.336, 2.323	89.95, 90.04, 89.95, 90.04	0.239	-0.319, -0.300, -0.319, -0.300	-1930.874523 -52541.80	-1930.906285 -52542.66		
2	4PL	4	2.334, 2.334, 2.334, 2.334	90.00, 90.00, 90.00, 90.00	0.271	-0.318, -0.318, -0.318, -0.318	-1930.896836 -52542.41	-1930.928419 -52543.26		
Eth	Ethanol									
3	4PL	2	2.317, 2.333, 2.317, 2.333	90.00, 90.00, 90.00, 90.00	0.214	-0.290, -0.317, -0.290, -0.317	-1930.947619 -52543.79	-1930.979470 -52544.65		
4	4PL	4	2.329, 2.329, 2.329, 2.329	90.00, 90.00, 90.00, 90.00	0.248	-0.312, -0.312, -0.312, -0.312	-1930.969823 -52544.39	-1931.002168 -52545.27		

Figure S7. Optimal geometry of Os^{III}Cl₄⁻ complex in doublet and quartet states (square planar – 4PL).

Table S6. Electronic and geometric structure of $Os^{III}Cl_5^{2-}$ (Figure S5(b)). Multiplicity, M; bond lengths, $R_{OsCl(6)}$, $R_{OsCl(i)}$; bond angles, $\angle Cl(6)OsCl(i)$, $\angle Cl(1)OsCl(3)$, $\angle Cl(3)OsCl(4)$, $\angle Cl(4)OsCl(5)$, $\angle Cl(5)OsCl(1)$; atom charges, q_{Os} , $q_{Cl(6)}$, $q_{Cl(i)}$, i=1,3,4,5; total energy, E_0 ; Gibbs free energy, E_G .

Nº	OsCl ₅ -2 conf.	М	R _{OsCl(6)}	$R_{OsCl(i)}, i=1,3,4, 5$	$\angle Cl(6)OsCl(i)$ <i>i</i> =1,3,4,5	$ \begin{array}{l} \angle Cl(1)OsCl(3) \\ \angle Cl(3)OsCl(4) \\ \angle Cl(4)OsCl(5) \\ \angle Cl(5)OsCl(1) \end{array} $	q _{Os}	q _{Cl(6)}	q _{Cl(i)} , <i>i</i> =1,3,4 ,5	E ₀ , Hartree, eV	E _G , Hartree, eV
Gas	Gas										
1	4GP	2	2.381	2.435 2.435 2.435 2.435 2.435	94.61 94.61 94.61 94.61	89.63 89.63 89.63 89.63	0.237	-0.392	-0.461 -0.461 -0.461 -0.461	-2390.843242 -65058.19	-2390.877411 -65059.12
2	4GP	4	2.609	2.436 2.410 2.436 2.410	92.33 103.55 92.33 103.55	89.45 89.45 89.45 89.45	0.319	-0.535	-0.457 -0.435 -0.457 -0.435	-2390.845585 -65058,25	-2390.880952 -65059.22
Eth	anol										
3	4GP	2	2.362	2.414 2.412 2.413 2.412	93.63 93.68 93.17 93.68	89.78 89.78 89.78 89.78 89.78	0.180	-0.383	-0.449 -0.449 -0.449 -0.449	-2391.126611 -65065.90	-2391.160510 -65066.82
4	4GP	4	2.602	2.419 2.372 2.419 2.372	92.09 100.05 92.11 100.02	89.64 89.63 89.63 89.64	0.222	-0.548	-0.447 -0.390 -0.447 -0.390	-2391.126865 -65065.91	-2391.161618 -65066.85