Supporting information

Photodynamic activity attained through the ruptured π-conjugation of pyridyl groups with a porphyrin macrocycle: synthesis and the photophysical and photobiological evaluation of 5-mono-(4-nitrophenyl)-10,15,20-tris-[4-(phenoxymethyl)pyridine]-porphyrin and its Zn(II) complex

Zeaul H. Mazumder,¹ Debdulal Sharma,² Devashish Sengupta,^{*1} Avinaba Mukherjee,³ Jayanta Sarmah Boruah,¹ Samita Basu,⁴ Pradeep Kumar Shukla,⁵ Tarun Jha.⁶

Address: ¹Department of Chemistry, Assam University; Silchar, Assam, India – 788011
²Department of Chemistry, N. C. College, Badarpur, Karimganj, Assam, India-788806
³Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India-700029
⁴Chemical Science Division, Saha Institute of Nuclear Physics, Kolkata, India-700064.
⁵Department of Physics, Assam University; Silchar, Assam, India – 788011
⁶Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India -700032
Corresponding Author E-mail: Devashish Sengupta; <u>devashish.sengupta@uni.sydney.edu.au</u>

Table of Contents

1. ΔG_{sol} values.	1
2. ¹ H-NMR Spectral Data.	2
3. Mass Spectral Data.	6
4. Photostability data.	8
5. Optimized geometries of target compounds.	10
6. Singlet oxygen generation results	11

Table S1: The Gibbs free energies of the compounds and their free energy of solvation (ΔG_{sol}), as determined at the B3LYP/6-31G* level of theory.

Compounds	Gibbs free energy (a.u.)		ΔG_{sol} (kcal/mol)
	Gas phase	Aqueous media	
(NPh)TPyP (reference)	-2165.847834	-2165.869791	-13.78
(NPh)TPyPZn (reference)	-3943.90699	-3943.937039	-18.86
P ₃ N	-3202.268471	-3202.301349	-20.63
P ₃ NZn	-4980.327341	-4980.368709	-25.96

¹H-NMR (400 MHz, CDCl3 at 300 K), δ : 8.64 (d, 2H; *J* = 8.12 Hz; 2,6-nitrophenyl), 8.08 (d, 2H; *J* = 8.01 Hz; 3,5-nitrophenyl), 8.92 (d, 2H; *J* = 5.12 Hz; β-pyrrole), 8.89 (s, 4H; β-pyrrole), 8.74 (d, 2H; *J* = 5.10 Hz; β-pyrrole), 8.22 (d, 4H; *J* = 8.23 Hz; 2,6-phenyl), 7.23 (d, 4H; *J* = 8.23 Hz; 3,5-phenyl), 8.40 (d, 2H; *J* = 8.60 Hz; 2,6-phenyl), 7.53 (d, 2H; *J* = 8.40 Hz; 3,5-phenyl), 1.44 (t, 9H; -CH₃ ester), 2.80 (q, 6H;-CH₂ ester), -2.77 (s, 2H, NH pyrrole). Apart from that, there were distinct signals at δ = 7.27 (s, due to TMS).

¹H-NMR (400 MHz, DMSO-d₆ at 300 K), $\delta = 10.30$ (s, 3H; –OH), 9.92 (d, 2H; 2,6-nitrophenyl), 8.91 (d, 2H; β -pyrrole), 8.85 (s, 4H; β -pyrrole), 8.82 (d, 2H; β -pyrrole), 8.75 (d, 2H; 2,6-phenyl), 8.50 (d, 2H; 2,6-phenyl), 8.10 (d, 2H; 3,5-nitrophenyl), 7.99 (d, 4H; 2,6-phenyl), 7.21 (d, 2H; 3,5-phenyl), \square –2.88 (s, 2H; NH pyrrole). Other distinct signals at $\delta = 2.49$ (s, due to traces of DMSO in DMSO-d6) and at 3.29 (br, due to HOD) were also observed.

¹H-NMR (400 MHz, DMSO-d₆ at 300 K), δ: 10.35 (d, 6H; 2,6-pyridine), 10.04 (d, 2H; *J* = 10.00 Hz; 2,6nitrophenyl), 8.85 (s, 4H; β-pyrrole), 8.66 (d, 2H; *J* = 8.00 Hz; β-pyrrole), 8.48 (d, 2H; *J* = 8.00 Hz; βpyrrole), 8.12 (d, 6H; 3,5-pyridine), 7.94 (d, 2H; 3,5-nitrophenyl), 7.99 (d, 6H; *J* = 7.60 Hz; 2,6-phenyl), 7.18 (d, 6H; *J* = 7.60 Hz; 3,5-phenyl). δ = -2.93 (s, 2H; NH pyrrole), 2.71 (s, 6H; -OCH₂). Signals at δ = 2.49 (s, due to traces of DMSO in DMSO-d6), 3.33 (br, due to HOD), and ethanol at (1.20 t, -CH₃, 3.52 overlapped, -CH₂) were also observed.

¹H-NMR (400 MHz, DMSO-d₆ at 300 K), δ: 10.31 (d, 6H; 2,6-pyridine), 9.92 (d, 2H; *J* = 10.80 Hz; 2,6nitrophenyl), 8.76 (s, 4H; β-pyrrole), 8.64 (d, 2H; *J* = 8.40 Hz; β-pyrrole), 8.44 (d, 2H; *J* = 8.40 Hz; βpyrrole), 8.06 (d, 6H; 3,5-pyridine), 8.00 (d, 2H; 3,5-nitrophenyl), 7.94 (d, 6H; *J* = 7.60 Hz; 2,6-phenyl), 7.16 (d, 6H; *J* = 7.60 Hz; 3,5-phenyl), 2.66 (s, 6H;–OCH₂). Residual signals at δ = 2.49 (s, due to traces of DMSO in DMSO-d₆) and at 3.46 (br, due to HOD), ethanol (1.18 t, –CH₃, 3.66 m, –CH₂).

Counts vs. Mass-to-Charge (m/z)

Fig. S1: Overlaid absorption spectra of the target photosensitizers P_3N and P_3NZn recorded in water (at 10 μ M concentration) at 90 days interval.

Fig. S2: Overlaid absorption spectra of the target photosensitizers P_3N and P_3NZn recorded in DMSO (at 10 μ M concentration) at 90 days interval.

Fig. S3: Optimized geometries of the reference porphyrins free base (**NPh**)**TPyP**, and **its** corresponding zinc(II)-complex (**NPh**)**TPyPZn**, along with the target photosensitizers with distal pyridyl groups, P₃N and P₃NZn at the B3LYP/6-31G* level of theory in aqueous media.

Fig. S4: Plot of kinetics of photooxidation of DMA by the target PSs P_3N and P_3NZn in DMSO.

Table S2: Rate constant (k) for photooxidation of DMA in DMSO by target PSs and respective singlet oxygen quantum yield (Φ_{Δ}) .

Compound	Rate constant (k) min ⁻¹	Singlet oxygen quantum yield (Φ_{Δ})
P ₃ NZn	0.01546	0.73
P ₃ N	0.01186	0.66