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Table S1: The Gibbs free energies of the compounds and their free energy of solvation (Gsol), 

as determined at the B3LYP/6-31G* level of theory.  

Compounds Gibbs free energy (a.u.) 

 
Gsol (kcal/mol) 

 

 Gas phase Aqueous media 

 

(NPh)TPyP  

(reference) 
2165.847834 2165.869791 13.78 

(NPh)TPyPZn 

(reference) 
  18.86 

P3N 3202.268471  20.63 

P3NZn 4980.327341  25.96 
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1H-NMR (400 MHz, CDCl3 at 300 K), δ: 8.64 (d, 2H; J = 8.12 Hz; 2,6-nitrophenyl), 8.08 (d, 2H; J = 8.01 

Hz; 3,5-nitrophenyl), 8.92 (d, 2H; J = 5.12 Hz; β-pyrrole), 8.89 (s, 4H; β-pyrrole), 8.74 (d, 2H; J = 5.10 

Hz; β-pyrrole), 8.22 (d, 4H; J = 8.23 Hz; 2,6-phenyl), 7.23 (d, 4H; J = 8.23 Hz; 3,5-phenyl), 8.40 (d, 2H; J 

= 8.60 Hz; 2,6-phenyl), 7.53 (d, 2H; J = 8.40 Hz; 3,5-phenyl), 1.44 (t, 9H; CH3 ester), 2.80 (q, 6H;CH2 

ester), 2.77 (s, 2H, NH pyrrole). Apart from that, there were distinct signals at δ = 7.27 (s, due to 

traces of CHCl3 in CDCl3) and at 1.60 (s, due to HOD). The peak appeared at δ = 0.017 (s, due to TMS). 
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1H-NMR (400 MHz, DMSO-d6 at 300 K), δ = 10.30 (s, 3H; OH), 9.92 (d, 2H; 2,6-nitrophenyl), 8.91 (d, 

2H; β-pyrrole), 8.85 (s, 4H; β-pyrrole), 8.82 (d, 2H; β-pyrrole), 8.75 (d, 2H; 2,6-phenyl), 8.50 (d, 2H; 

2,6-phenyl), 8.10 (d, 2H; 3,5-nitrophenyl), 7.99 (d, 4H; 2,6-phenyl), 7.21 (d, 2H; 3,5-phenyl), 2.88 

(s, 2H; NH pyrrole). Other distinct signals at δ = 2.49 (s, due to traces of DMSO in DMSO-d6) and at 

3.29 (br, due to HOD) were also observed.  
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 1H-NMR (400 MHz, DMSO-d6 at 300 K), δ: 10.35 (d, 6H; 2,6-pyridine), 10.04 (d, 2H; J = 10.00 Hz; 2,6-

nitrophenyl), 8.85 (s, 4H; β-pyrrole), 8.66 (d, 2H; J = 8.00 Hz; β-pyrrole), 8.48 (d, 2H; J = 8.00 Hz; β-

pyrrole), 8.12 (d, 6H; 3,5-pyridine), 7.94 (d, 2H; 3,5-nitrophenyl), 7.99 (d, 6H; J = 7.60 Hz; 2,6-phenyl), 

7.18 (d, 6H; J = 7.60 Hz; 3,5-phenyl). δ = 2.93 (s, 2H; NH pyrrole), s, 6H; OCH2). Signals at δ = 

2.49 (s, due to traces of DMSO in DMSO-d6), 3.33 (br, due to HOD), and ethanol at (1.20 t, –CH3, 3.52 

overlapped, CH2) were also observed. 
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1H-NMR (400 MHz, DMSO-d6 at 300 K), δ: 10.31 (d, 6H; 2,6-pyridine), 9.92 (d, 2H; J = 10.80 Hz; 2,6-

nitrophenyl), 8.76 (s, 4H; β-pyrrole), 8.64 (d, 2H; J = 8.40 Hz; β-pyrrole), 8.44 (d, 2H; J = 8.40 Hz; β-

pyrrole), 8.06 (d, 6H; 3,5-pyridine), 8.00 (d, 2H; 3,5-nitrophenyl), 7.94 (d, 6H; J = 7.60 Hz; 2,6-phenyl), 

7.16 (d, 6H; J = 7.60 Hz; 3,5-phenyl), s, 6H;OCH2). Residual signals at δ = 2.49 (s, due to traces 

of DMSO in DMSO-d6) and at 3.46 (br, due to HOD), ethanol (1.18 t, –CH3, 3.66 m, CH2). 
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Fig. S1: Overlaid absorption spectra of the target photosensitizers P3N and P3NZn recorded in 

water (at 10 M concentration) at 90 days interval. 
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Fig. S2: Overlaid absorption spectra of the target photosensitizers P3N and P3NZn recorded in 

DMSO (at 10 M concentration) at 90 days interval. 
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Fig. S3: Optimized geometries of the reference porphyrins free base (NPh)TPyP, and its 

corresponding zinc(II)-complex (NPh)TPyPZn, along with the target photosensitizers with 

distal pyridyl groups, P3N and P3NZn at the B3LYP/6-31G* level of theory in aqueous media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)	(NPh)TPyP (b)	(NPh)TPyPZn

(c)	P3N (d)	P3NZn
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Fig. S4: Plot of kinetics of photooxidation of DMA by the target PSs P3N and P3NZn in 

DMSO. 
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Table S2: Rate constant (k) for photooxidation of DMA in DMSO by target PSs and respective 

singlet oxygen quantum yield (). 

 

Compound 
Rate constant (k) 

min-1 

Singlet oxygen 

quantum yield () 

P3NZn 0.01546 0.73 

P3N 0.01186 0.66 

 


