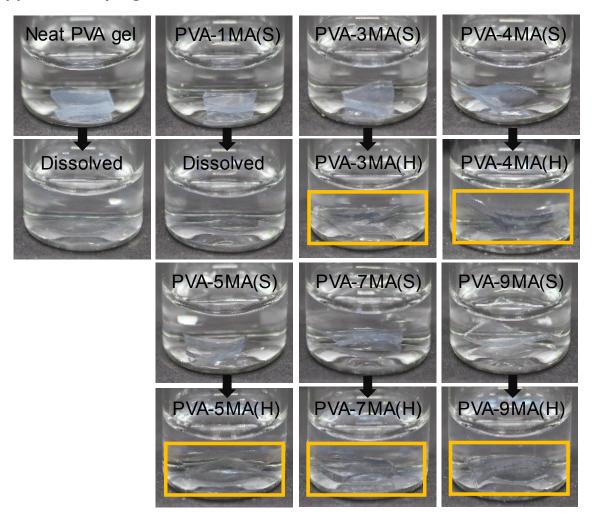
## **Electronic Supplementary Information**


# Solid-phase esterification between poly(vinyl alcohol) and malonic acid and its function in toughening hydrogels

Tianqi Liu, Xin Peng, Yuanyuan Chen, Jianan Zhang, Chen Jiao and Huiliang Wang\*

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

\*E-mail: wanghl@bnu.edu.cn

#### **Supplementary Figures**



**Fig. S1** Photographs showing the state of the PVA-xMA(S) hydrogels with varying MA content after being heated in deionized water at 95 °C for more than 20 h.

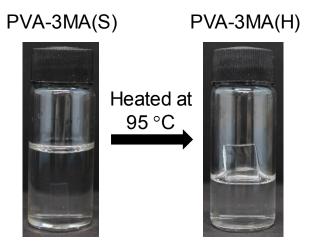
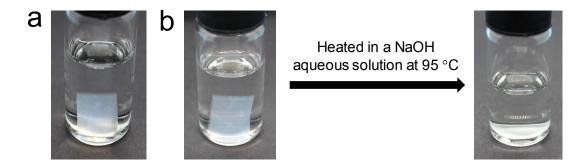
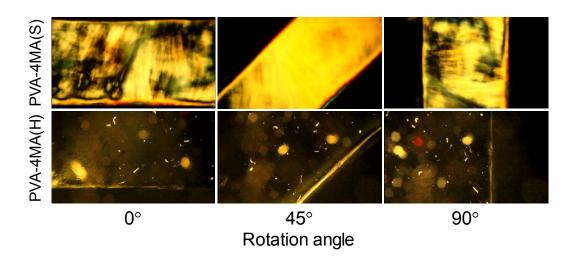





Fig. S2 Photographs showing the state of the PVA-3MA(S) hydrogel after being heated in a 5 mol

 $L^{\text{-}1}$  NaSCN aqueous solution at 95 °C for more than 20 h.



**Fig. S3** (a) A photograph of the AP-PVA-7MA hydrogel in deionized water. (b) Photographs showing the state the PVA-7MA(S) hydrogel in deionized water and the PVA-7MA(S) hydrogel after being heated in a 0.2 mol L<sup>-1</sup> NaOH aqueous solution at 95 °C.



**Fig. S4** Polarized optical microscopic (POM) images of the PVA-4MA(S) and PVA-4MA(H) hydrogels at the rotation angle of 0, 45, and  $90^{\circ}$ .



**Fig. S5**  $^{1}$ H-NMR spectrum of the separated esterification products between MA and ethylene glycol in  $D_{2}O$  at 298 K (400 MHz).

### **Supplementary Tables**

**Table S1** Water contents of the PVA-xMA(S) and PVA-xMA(H) hydrogels.

| Hydrogel Code | H <sub>2</sub> O (wt%)           |  |
|---------------|----------------------------------|--|
| PVA-0MA(S)    | 61.6 ± 0.2                       |  |
| PVA-1MA(S)    | $62.6\pm0.4$                     |  |
| PVA-3MA(S)    | $\textbf{53.4} \pm \textbf{0.7}$ |  |
| PVA-4MA(S)    | $50.3\pm0.3$                     |  |
| PVA-5MA(S)    | $43.0\pm0.6$                     |  |
| PVA-7MA(S)    | $36.0 \pm 0.7$                   |  |
| PVA-9MA(S)    | $35.2\pm0.4$                     |  |
| PVA-3MA(H)    | $80.8\pm0.3$                     |  |
| PVA-4MA(H)    | $74.8\pm1.1$                     |  |
| PVA-5MA(H)    | $70.6\pm0.5$                     |  |
| PVA-7MA(H)    | $63.7 \pm 0.4$                   |  |
| PVA-9MA(H)    | 56.6 ± 1.2                       |  |
|               |                                  |  |

**Table S2** Values of the cross-linking density ( $\nu_{\rm e}$ ) of the PVA-xMA(H) hydrogels at the temperature of 298 K.

| Sample     | $ u_{\rm e}$ (mol m <sup>-3</sup> ) |                       |                         |
|------------|-------------------------------------|-----------------------|-------------------------|
|            | 0.01 rad s <sup>-1</sup>            | 1 rad s <sup>-1</sup> | 100 rad s <sup>-1</sup> |
| PVA-4MA(H) | 172                                 | 183                   | 190                     |
| PVA-5MA(H) | 293                                 | 315                   | 337                     |
| PVA-7MA(H) | 338                                 | 359                   | 416                     |
| PVA-9MA(H) | 396                                 | 484                   | 517                     |

#### **Supplementary Movies**

**Movie S1** A movie showing the PVA-4MA(S) hydrogel observed by POM at different rotation angles.

**Movie S2** A movie showing the PVA-4MA(H) hydrogel observed by POM at different rotation angles.

Movie S3 A movie showing the load-bearing ability of the healed PVA-7MA(S) hydrogel.

Movie S4 A movie showing the tensile mechanical test of the healed PVA-7MA(S) hydrogel.