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 Curve-fitting for solvent-dependent self-assembly

The normalized degree of aggregation (αagg) was deduced from the absorbance change in UV-vis spectra upon 

increasing the volume fraction (f) of good solvents, according to Eq. (1):

 (1)
𝑎𝑔𝑔 =  

𝐴(𝑓) ‒ 𝐴(𝑓 = 0)
𝐴(𝑓 = 1) ‒ 𝐴(𝑓 = 0)

Where A(f) is the absorbance at a given volume fraction of good solvents. 

The nucleation-elongation model for solvent-dependent self-assembly was reported by Meijer and co-

workers,1,2 as described by Eq. (2) and (3). The simulation and curve-fittings with the equilibrium model were 

performed using MATLAB R2018.

 (2)Δ𝐺𝑓 =  Δ𝐺𝑓 + 𝑚𝑓

 (3)𝐾𝑒 =  𝑒𝑥𝑝⁡( ‒ Δ𝐺𝑓/𝑅𝑇)

ΔGf represents the Gibbs free energy gain upon addition of monomer in poor solvent. R is the gas constant, and T 

is the temperature. The dependence of ΔGf on f is described by the m-value.

The cooperativity factor  is given by Eq. (4):

   (4)
 =  

𝐾𝑛

𝐾𝑒

Where Kn and Ke are the binding constants for the nucleation and elongation steps, respectively.

Procedures for self-assembly experiments

Compound 1-3 was suspended in hydrocarbon-based solvents such as n-hexanes, heptane, and MCH at a 

concentration of 0.5 mg mL−1, gently heated to ensure complete dissolution, then allowed to cool to ambient 

temperature over 24 h. A drop of each solution was dropcast onto carbon-coated copper grids for analysis by TEM. 

Atomic force microscopy (AFM) images were collected by dropcasting from solution (0.5 mg mL−1) onto carbon 

coated mica. 
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Figure S1. MALDI-TOF mass spectra of 1.

Figure S2. MALDI-TOF mass spectra of 2. 
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Figure S3. MALDI-TOF mass spectra of 3.
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Figure S4. 1H NMR spectrum of 1 in CDCl3. 
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Figure S5 13C NMR spectrum of 1 in CDCl3. 
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Figure S6. 1H NMR spectrum of 2 in CDCl3.
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Figure S7. 13C NMR spectrum of 2 in CDCl3. 
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Figure S8. 1H NMR spectrum of 3 in CDCl3.
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Figure S9. 13C NMR spectrum of 3 in CDCl3.
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Figure S10. IR spectra of the isocyanide ligand and complexes 1-3.
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Figure S11. Thermogravimetric analysis (TGA) for 1-3.
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Figure S12. (a) TEM images of a) seed micelles of 1. (b-e) TEM images of fibre-like micelles after 

addition of  (b) 0.25, (c) 0.5, (d) 1, (e) 2 eq. of 1 unimer to seed micelles. (f) Linear dependence of 

average contour length (Ln) on the monomer to seed molar ratio for the seeded growth of 1.
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Figure S13. Histogram plots of micelle contour length after addition of 1 unimer to seed micelles.
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Figure S14. H NMR spectra of 3 in CDCl3 (top) and d12-cyclohexane/ CDCl3 (10 : 1, v/v) (bottom).

N
S

N

PtPtHN NH

O

O
PEt3

PEt3

PEt3

PEt3

OR

OR

OR

RO

RO

RO

R =

Figure S15. Pt(II) complex with bulky phosphine ligand reported by Wang and coworker.3 The critical 

gelation concentration is reported to be 10 mM (ca. 20 mg/mL), which is much higher than complex 3 

(critical gelation concentration: 10 mg/mL). The result confirms that less-bulky isocyanide ligand allows 

closer packing of molecules.
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Figure S16. XRD spectra of 1 and 3 in the solid and xerogel states.

Figure S17. (a) UV-vis spectra changes of 1 (c = 1 × 10-5 M) upon Ag+ titration in EtOH/CHCl3 (1 : 1, 

v/v). (b and c) Emission spectra changes of 1 (c = 1 × 10-5 M) upon Ag+ titration in EtOH/CHCl3 (1 : 1, 

v/v).
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