Supporting Information

Controlling the supramolecular polymerization of dinuclear isocyanide gold(I) arylethynylene complexes through tuning the central π -conjugated moiety

Na Zhou,^{1,§} Rebekah Hailes,^{2,§} Youzhi Zhang,³ Zuofeng Chen,¹ Ian Manners⁴ and Xiaoming He^{3,*}

[§]These authors contributed equally to this work

¹ School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China

² School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

³ School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China

⁴ Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia, V8P

5C2, Canada

*To whom correspondence should be addressed: <u>xmhe@snnu.edu.cn</u>

Curve-fitting for solvent-dependent self-assembly

The normalized degree of aggregation (α_{agg}) was deduced from the absorbance change in UV-vis spectra upon increasing the volume fraction (*f*) of good solvents, according to Eq. (1):

$$\alpha_{agg} = \frac{A(f) - A(f=0)}{A(f=1) - A(f=0)}$$
(1)

Where A(f) is the absorbance at a given volume fraction of good solvents.

The nucleation-elongation model for solvent-dependent self-assembly was reported by Meijer and coworkers,^{1,2} as described by Eq. (2) and (3). The simulation and curve-fittings with the equilibrium model were performed using MATLAB R2018.

$$\Delta G_f = \Delta G_f + m_{\times} f_{(2)}$$
$$K_e = exp^{(0)} (-\Delta G_f / RT)_{(3)}$$

 ΔG_f represents the Gibbs free energy gain upon addition of monomer in poor solvent. *R* is the gas constant, and *T* is the temperature. The dependence of ΔG_f on *f* is described by the m-value.

The cooperativity factor σ is given by Eq. (4):

$$\sigma = \frac{K_n}{K_e}$$
(4)

Where K_n and K_e are the binding constants for the nucleation and elongation steps, respectively.

Procedures for self-assembly experiments

Compound 1-3 was suspended in hydrocarbon-based solvents such as *n*-hexanes, heptane, and MCH at a concentration of 0.5 mg mL⁻¹, gently heated to ensure complete dissolution, then allowed to cool to ambient temperature over 24 h. A drop of each solution was dropcast onto carbon-coated copper grids for analysis by TEM. Atomic force microscopy (AFM) images were collected by dropcasting from solution (0.5 mg mL⁻¹) onto carbon coated mica.

Figure S1. MALDI-TOF mass spectra of 1.

Figure S2. MALDI-TOF mass spectra of 2.

Figure S3. MALDI-TOF mass spectra of 3.

Figure S4. ¹H NMR spectrum of 1 in CDCl₃.

Figure S5¹³C NMR spectrum of 1 in CDCl₃.

Figure S6. ¹H NMR spectrum of 2 in CDCl₃.

Figure S7. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S8. ¹H NMR spectrum of 3 in CDCl₃.

Figure S9. ¹³C NMR spectrum of 3 in CDCl₃.

Figure S10. IR spectra of the isocyanide ligand and complexes 1-3.

Figure S11. Thermogravimetric analysis (TGA) for 1-3.

Figure S12. (a) TEM images of a) seed micelles of 1. (b-e) TEM images of fibre-like micelles after addition of (b) 0.25, (c) 0.5, (d) 1, (e) 2 eq. of 1 unimer to seed micelles. (f) Linear dependence of average contour length (L_n) on the monomer to seed molar ratio for the seeded growth of 1.

Figure S13. Histogram plots of micelle contour length after addition of 1 unimer to seed micelles.

Figure S14. H NMR spectra of 3 in CDCl₃ (top) and d12-cyclohexane/ CDCl₃ (10 : 1, v/v) (bottom).

Figure S15. Pt(II) complex with bulky phosphine ligand reported by Wang and coworker.³ The critical gelation concentration is reported to be 10 mM (*ca.* 20 mg/mL), which is much higher than complex **3** (critical gelation concentration: 10 mg/mL). The result confirms that less-bulky isocyanide ligand allows closer packing of molecules.

Figure S16. XRD spectra of 1 and 3 in the solid and xerogel states.

Figure S17. (a) UV-vis spectra changes of **1** ($c = 1 \times 10^{-5}$ M) upon Ag⁺ titration in EtOH/CHCl₃ (1 : 1, v/v). (b and c) Emission spectra changes of **1** ($c = 1 \times 10^{-5}$ M) upon Ag⁺ titration in EtOH/CHCl₃ (1 : 1, v/v).

References

- 1. P. A. Korevaar, C. Schaefer, T. F. A. de Greef and E. W. Meijer, J. Am. Chem. Soc., 2012, 134, 13482.
- 2. D. van der Zwaag, Pa. A. Pieters, P. A. Korevaar, A. J. Markvoort, A. J. H. Spiering, T. F. A. de Greef and E. W. Meijer, *J. Am. Chem. Soc.*, 2015, **137**, 12677.
- 3. X. Wang, Y. Han, Y. Liu, G. Zou, Z. Gao, F. Wang, Angew. Chem. Int. Ed. 2017, 56, 12466.