Supplementary Files

Polymerization of Dopamine Accompanying Its Coupling to Induce Self-Assembly of Block Copolymer and Application in Drug Delivery

Yudian Qiu^a, Zongyuan Zhu^b, Yalei Miao^a, Panke Zhang^a, Xu Jia^c, Zhongyi Liu^a, Xubo Zhao^{*a}

^aCollege of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China.
^bEnergy and Power Department, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
^cSchool of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.

*To whom correspondence should be addressed. E-mail: xbz2016@zzu.edu.cn

This PDF file includes:

Fig. S1. Synthesis procedure for the CH₃O–PEG₄₃–*b*–PAA₈₈ (a) and PAA₇₂–*b*–PEG₄₃–*b*–PAA₇₂ (b) copolymers. **Fig. S2.** ¹H NMR spectra of CH₃O–PEG₄₃–OH (A), CH₃O–PEG₄₃–Br (B), CH₃O–PEG₄₃–*b*–PtBA₈₈ (C), and CH₃O–PEG₄₃–*b*–PAA₈₈ (D), HO–PEG₄₃–OH (E), Br–PEG₄₃–Br (F), PtBA₇₂–*b*–PEG₄₃–*b*–PtBA₇₂ (G), and PAA₇₂–*b*–PEG₄₃–*b*–PAA₇₂ (H).

Fig. S3. FT-IR spectra of CH₃O–PEG₄₃–OH (a), CH₃O–PEG₄₃–Br (a), CH₃O–PEG₄₃–b–PtBA₈₈(a), HO–PEG₄₃–OH (b), Br–PEG₄₃–Br (b), and PtBA₇₂–b–PEG₄₃–b–PtBA₇₂ (b).

Fig. S4. High-resolution XPS spectra of the C1s(a), O1s(b), and N1s(c) of CH₃O–PEG₄₃–b–PAA₈₈, and the C1s(d), O1s(e), and N1s(f) of CH₃O–PEG₄₃–b–P(DA–co–AA)₈₈.

Fig. S5. The interactions between DOX and $P(DA-co-AA)_{72}$ -*b*-PEG₄₃-*b*-P(DA-*co*-AA)₇₂, and between BTZ and BTZ-P(DA-*co*-AA)₇₂-*b*-PEG₄₃-*b*-P(DA-*co*-AA)₇₂.

Fig. S1. Synthesis procedure for the CH₃O–PEG₄₃–*b*–PAA₈₈ (a) and PAA₇₂–*b*–PEG₄₃–*b*–PAA₇₂ (b) copolymers.

Fig. S2. ¹H NMR spectra of CH₃O–PEG₄₃–OH (A), CH₃O–PEG₄₃–Br (B), CH₃O–PEG₄₃–*b*–PtBA₈₈ (C), and CH₃O–PEG₄₃–*b*–PAA₈₈ (D), HO–PEG₄₃–OH (E), Br–PEG₄₃–Br (F), PtBA₇₂–*b*–PEG₄₃–*b*–PtBA₇₂ (G), and PAA₇₂–*b*–PEG₄₃–*b*–PAA₇₂ (H).

Fig. S3. FT-IR spectra of CH₃O–PEG₄₃–OH (a), CH₃O–PEG₄₃–Br (a), CH₃O–PEG₄₃–*b*–P*t*BA₈₈(a), HO–PEG₄₃–OH (b), Br–PEG₄₃–Br (b), and *Pt*BA₇₂–*b*–PEG₄₃–*b*–PtBA₇₂ (b).

Fig. S4. High-resolution XPS spectra of the C1s (a), O1s (b), and N1s (c) of $CH_3O-PEG_{43}-b-PAA_{88}$, and the C1s (d), O1s (e), and N1s (f) of $CH_3O-PEG_{43}-b-P(DA-co-AA)_{88}$.

Fig. S5. The interactions between DOX and $P(DA-co-AA)_{72}$ - $b-PEG_{43}$ - $b-P(DA-co-AA)_{72}$, and between BTZ and BTZ- $P(DA-co-AA)_{72}$ - $b-PEG_{43}$ - $b-P(DA-co-AA)_{72}$.