Bio-orthogonal triazolinedione (TAD) crosslinked protein nanocapsules affect protein adsorption and cell interaction

Marie-Luise Frey^a, Johanna Simon^{a,b}, Maximilian Brückner^{a,b}, Volker Mailänder^{b,a}, Svenja Morsbach^a, Katharina Landfester^{a,*}

 ^aMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
^bDepartment of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany

Content

2
3
3
4
4
6
7

1. Synthesis scheme of MDI-TAD

This procedure was adopted after a previously published procedure from Du Prez and coworkers.¹

Scheme S1: Synthesis scheme of 4,4'-(4,4'-diphenylmethylene)-bis-(1,2,4-triazoline-3,5-dione) MDI-TAD.

¹ S. Billiet, K. De Bruycker, F. Driessen, H. Goossens, V. Van Speybroeck, J. M. Winne and F. E. Du Prez, *Nat Chem*, 2014, **6**, 815-821.

2. Dynamic light scattering

Figure S1: Size distribution of the different nanocapsules at an exemplary scattering angle of 90° in toluene represented by the distribution of relaxation times H(In τ) (solid lines) together with the respective autocorrelation functions g2(t) (filled squares).

3. NMR spectra

Figure S2: Full ¹H-NMR-Spectra of a Trp-TAD emulsion (green) in comparison to a TAD-TAD emulsion (red) in d6-DMSO.

4. Pierce Assay

Figure S3: Quantification of the protein corona amount. Protein nanocapsules (0.05 m^2) were incubated with human serum (1 mL) for 1 h at 37 °C and the amount of all corona proteins was quantified via Pierce Assay (in mg). The red line indicates the threshold of 0.5 mg m⁻² protein, below which quantification becomes less sensitive to differences.

5. SDS-PAGE

Figure S4: Protein corona profile. BSA-nanocapsules were incubated with human serum for 1 h at 37 °C and the protein corona was analyzed SDS-PAGE.

Figure S5: Protein corona profile. OVA-nanocapsules were incubated with human serum for 1 h at 37 °C and the protein corona was analyzed SDS-PAGE.

Figure S6: Protein corona profile. HSA-nanocapsules were incubated with human serum for 1 h at 37 °C and the protein corona was analyzed SDS-PAGE.

6. Confocal laser scanning microscopy (cLSM)

Figure S7: Confocal laser scanning microscopy (cLSM) of HeLa cells incubated with differently crosslinked protein nanocapsules. On the left panel, cells incubated with nanocapsules with a concentration of 75 μ g mL⁻¹ for 2 h are shown, while on the right panel, cells incubated with the same concentration (75 μ g mL⁻¹) for 24 h are shown. All experiments were performed in cell culture medium containing 10% FBS. As a negative control, HeLa cells without nanocapsules treatment were stained with CellMask Deep Red only. The cell membrane is pseudo-coloured in red and the nanocapsules are pseudo-coloured in green. All scale bars represent 25 μ m.

7. Cell viability

Figure S8: Cell viability of HeLa cells treated with differently crosslinked protein nanocapsules at concentrations of 75 μ g mL⁻¹ for 2 h and 24 h of incubation. Untreated cells were incubated with the same volume of 10% FBS supplemented DMEM. The percentage of viable cells is proportional to the measured luminescence signal.