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Synthesis of 2-1sopropyl-2-oxazoline (‘POX)

At first zinc acetate dihydrate (2.86 g, 13.02 mmol) and isobutyronitrile (39 mL, 434.1 mmol)
were taken in a 50 mL RB flask and heated at 120 °C for few minutes. Ethanolamine (31.5
mL, 520.9 mmol) was then added dropwise while refluxing the mixture at that particular
temperature for 24 h. After that the whole solution was washed 3 times with water and 2
times with DCM and finally distilled under reduce pressure to collect a colourless pure liquid
product with almost 60% vyield. The details characterization data, ESI-MS (Figure S11), *H-

NMR (Figure S12) and 3C-NMR (Figure S13) were given below.
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Scheme S2.  Schematic representation for the encapsulation behaviours of different dyes by

copolymer in DCM

the as-synthesized graft copolymer vesicles in water.
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Figure S1.  FTIR spectra of all the compounds.
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ESI-MS spectrum of Cys-S-Pr in mixture of MeOH: H.O (1:1)
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Figure S3. H-NMR spectra of Cys-S-Pr (1), Cys-S-Pr NCA (2), PCys-S-Pr (C2) (3) in

DMSO-ds
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Figure S4.  ®C-NMR spectrum of Cys-S-Pr in D2O
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Figure S5. MALDI-TOF-MS spectrum of Cys-S-Pr NCA
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Figure S8.  H-NMR spectra of C1 in DMSO-ds (1), P1 (2) and G1 (3) in D0.
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Figure S10. MALDI-TOF-MS spectrum of PCys-S-Pr (C1).
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Figure S11.  ESI-MS spectrum of 'POx in DCM
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Figure S13. *C-NMR spectrum of 'POx in CDCls

13C-NMR (300 MHz, CDCl3, TMS) & (ppm): 19.738, 28.155, 54.399, 67.286, 172.725
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Figure S14. *C-NMR spectrum of P'POx (P1) in D20
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Figure S16. MALDI-TOF-MS spectrum of P1
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Determination of critical aggregation concentration (CAC)

Pyrene was used as the polarity probe for determination of CAC. Pyrene is a well-known dye
to investigate the polarity changes in the microenvironment (micelle or vesicle) from polarity
changes in the macroenvironment (bulk solvent) A characteristic property of pyrene, which
indicates the polarity of the environment in which it is solubilised, is the ratio of its
fluorescence peaks at A ~ 372 nm for the 0—0 band (11) and at A ~ 383 nm corresponds to the
third principal vibronic band (I3) in water, which are very much sensitive to polarity of the
medium. For this a series of polymer sample (G2) solutions in water was prepared of
concentration ranging from 1 mg/mL to 1x102 mg/mL. A stock solution of pyrene of 10*(M)
in acetone was prepared and 20 pL of that solution was transferred into 9 separate glass vials.
After evaporating the acetone, 2mL of each polymer solution was added into those vials
separately and sonicated for 10 minutes and kept for overnight undisturbed. Final
concentration of pyrene was kept constant at 10°%(M) for each solution. Fluorescence
emission intensity was measured by exciting those solutions at A ~ 334 nm and keeping the
slit width at 5 nm. After normalising the intensity at A ~ 372 nm, the ratio of lzss and Is72
(1s/11) was plotted against the logarithm of the concentration (mg/mL) of different polymer
solutions. The plot of intensity ratio (Is/11) against the log of polymer concentration (mg/mL)
showed a slow increase of the Is/l1 value with concentration followed by a sudden jump. The
CAC was obtained from the interception point of two straight lines and was found to be 0.22

mg/mL (Figure S20).
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Figure S20. Emission spectra of pyrene (Aex = 334 nm) in the presence of aqueous G2 of
varying concentration. Inset represented the plot of fluorescence vibronic intensities ratio

(1s/12) as a function of the G2 concentration as measured from emission spectra.
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Figure S21: Time dependent intensity-weighted particle size distributions of G3 in water at a

concentration of 2.0 (A) and 5.0 (B) mg/mL, as obtained from DLS.
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Table S1.  Particle size distribution of the graft copolymers (G1, G2 and G3) in water at

different time intervals as observed from DLS, showing particles of mainly two different size

distributions.
Graft copolymers
Particle size distribution (G1) Particle size distribution (G2) Particle size distribution (G3)
. St. St. St. St. St. St.
Time

. I Small | dev. | Large | dev. PDI | Small | dev. | Large | dev. PDI Small | dev. | Large | dev. | PDI
interval | “m) (nm) (nm) (nm) (nm) (nm)

0.0h 20.1 9.9 195 525 | 0.384 16 3.6 237 259 | 0.330 40 2.8 294 | 56.3 | 0.303
20h 21.2 | 10.8 244 83.4 | 0345 | 195 6.1 221 71.8 | 0.256 37.8 53 | 294.7 | 64.3 | 0.287

6.0 h 176 | 11.8 | 246.2 58.3 | 0321 | 224 59 | 250.2 | 743 | 0.282 41.2 8.3 292 | 66.1 | 0.354

10 h 19.5 8.4 285 69.7 | 0.338 | 19.7 3.0 | 2938 | 51.1 | 0.485 37.8 53 | 302.1 | 78.6 | 0.351
15h 21.7 83 | 3029 | 459 | 0379 | 27.0 21 | 3024 | 534 | 0.343 | 4318 | 2.6 | 3024 | 61.1 | 0.370
20h 20.8 9.7 | 309.4 | 55.30 | 0.415 | 25.0 | 11.7 | 299.7 | 61.1 | 0.370 36.2 52 | 300.9 | 53.4 | 0.456
24 h 20.3 73 | 3231 | 415 | 0342 | 242 52 334 53.4 | 0421 31.7 5.9 304 | 50.7 | 0.434
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Figure S22. FESEM image of G2 in water showing unit vesicles with an average diameter

~ 20 nm and conjugate vesicles with an average diameter of ~250 nm.
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Figure S23. TEM image of G3 solution in water showing unit vesicles (avg. diameter ~ 15

nm) and conjugate vesicles (avg. diameter ~ 170).
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Figure S24. (A) Average hydrodynamic diameter of G2 (0.2 wt%, H»0) vs temperature
plot (pink) as measured from DLS. Also the correlation between hydrodynamic diameters
(Dn)s (m) and % transmittance (at A = 500 nm) (e) of aqueous G2 solution (0.2 wt%) at
different temperatures showing prominent cloud points of G2 and (B) FESEM image of

aggregated morphology of G2 (0.2 wt %) in water above its T¢p (41 °C).
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Figure S25. DLS curves (A) and TEM image (B) of G2 vesicles in DCM (0.1 wt%).
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Figure S26. Emission spectra of NR in water at different time intervals in the presence of

0.2 wt% of G2.
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Figure S27. Emission spectra of EB-encapsulated G1 vesicle at different temperatures

showing increment in intensity with increasing solution temperature.
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Figure S28. Emission spectra of neat EB in water showing increment in intensity upon

dilution.
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Figure S29. (A) UV-vis spectra of free EB and EB-encapsulated G1 in DCM; (B)
Emission spectra (Amax= 590 nm) of free EB and EB-encapsulated G1 in DCM and inset
showed difference of colour intensity of the EB in DCM with (i) and without (ii) 0.2 wt% of

G1 and (C) Fluorescence confocal microscopic image of EB-loaded G1 vesicles in DCM.
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Figure S30.  Calibration curve of neat Dox in water
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Figure S31. Fluorescence emission spectra of Dox-loaded vesicle (G2) as a function of

increasing temperature from 25 to 85 °C (A) and fluorescence emission spectra of free Dox

in water at two extreme temperatures showing no such change in intensity (B).
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Figure S32. Emission spectra of neat Dox in water showing increment in intensity upon

dilution.
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Figure S33.  Fluorescence emission spectra of Dox-loaded vesicles (G2) suspensions after
treated with HCI of varying concentrations (A) and Fluorescence emission spectra of neat
Dox in water in the presence of concentrated HCI (12 N) showing no such change in

intensity (B).
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Figure S34.

image.

Dox-loaded G2 vesicles after treated with HCI: (A) DLS data and (B) TEM
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Figure S35. (A) Absorption spectra of Dox encapsulated in G2 along with its base (NaOH)
treated solution. Inset showed its colour change and the results of control experiment of free
Dox in presence of base. (B) Emission spectra of Dox encapsulated in G2 along with its base
(NaOH) treated solution. Inset showing results of control experiment of free Dox in presence

of base (NaOH).
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Figure S36. Emission spectra of Dox encapsulated in G2 in phosphate buffer solution at

two different pHs (4.5 and 7.4) at 37 °C.
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