Electronic Supplementary Information

Nanoparticles decorated with folate based on a site-selective *a*CD-rotaxanated PEG-b-PCL copolymer for targeted cancer therapy

G. Dal Poggetto¹, S.S. Troise^{1,2}, C. Conte³, R. Marchetti², F. Moret⁴, A. Silipo², A. Iadonisi², R. Lanzetta², M. Malinconico¹, F. Quaglia^{3*}, P. Laurienzo^{1*}

¹ Institute for Polymers, Composites and Biomaterials, C.N.R., Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy

² Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy

³Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy

⁴ Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy

Figure S1. FTIR spectra of (a) TsO-PEG_{1.5k}-N₃, (b) R1, and (c) R2 with the assignment of diagnostic peaks. The spectra evidence the complete disappearance of the peak at 2105 cm⁻¹, corresponding to specific vibration of the azide group, in R1 and R2.

Figure S2. GPC curves (refractive index vs. retention volume, mL) of Fol-PEG_{1k}-PCL_{4k} and R2. The mobile phase was THF.

Figure S3. A. ¹H NMR spectrum of R1 in d6-DMSO with the designation of polymer peaks. B. ¹H NMR spectrum of R1 in d6-DMSO with the designation of α CD peaks. The sugar ring positions are numbered on one unit of the α CD chemical structure reported in the figure.

TGA analysis

The thermal stability of pure copolymer and rotaxanes was investigated by TGA. Increase in thermal stability is a striking feature for the formation of PEG- α CD inclusion complex. The thermogravimetric curve of Fol-PEG_{1.5k}-b-PCL_{4k} (Figure S4) follows a two-step decomposition process which starts around 250°C. According to literature,¹ PEG starts to degrade above 280°C, which corresponds to the second stage in the curve of Fol-PEG_{1.5k}-b-PCL_{4k,} whereas the first stage is relative to PCL degradation.² The profile of both rotaxanes shows a one stage thermal decomposition starting around 290°C for R2 and above 300°C for R1. The higher incipit of degradation of R1 with respect to R2 was attributed to the crystalline organisation of threaded α CDs in the channel-like structure, as assessed by WAXD analysis, which further contributes to increasing the thermal stability.

Figure S4. TGA curves of Fol-PEG_{1.5k}-b-PCL_{4k} and rotaxanated copolymers.

References

- 1. X. Du, H. Wang, X. Cheng, Z. Du, RSC Adv. 2016, 6, 42643.
- 2. O. Persnaire, M. Alexandre, P. Degèe, P. Dubois, *Biomacromolecules*, 2001, 2, 288.

Figure S5. XRD diffractogram of αCD (a) and butynyl-PCL_{4k} (b)

Figure S 6. Representative TEM micrographs of Fol-NPs 20% (a) and R1-NPs 20% (b)

Formulation code	D _H (nm)	P.I.	ζ (mV)	Nile Red Actual loading (mg NR/100 mg NPs)
ntNPs	96.6	0.1	-14.3	0.78
Fol-NPs 10%	124.2	0.2	-25.3	0.65
Fol-NPs 20%	129.7	0.2	-22.4	0.72
R1-NPs 10%	146.3	0.2	-28.9	0.80
R1-NPs 20%	149.5	0.2	-27.1	0.79

Table S1. Properties of Nile-Red loaded NPs. Nile Red actual loading was determined by dissolving 1 mg of NPs in 1 mL of THF/DMSO solution 1/1 and the samples analyzed by fluorescence, against a calibration curve of Nile Red prepared in the same solvents.

Figure S7. Fluorescence emission spectra (λ_{ex} 552 nm) of ntNPs and R1-NPs 10% loaded with Nile Red.