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Experimental Section 

Materials 

ZrCl4, 2,2’-bipyridine-5,5’-dimethyl (Me2BPY), norbornadiene rhodium(I) chloride dimer ([(nbd)RhCl]2), 

trimethylaluminium (AlMe3), triethylaluminium (AlEt3), methylaluminoxane (MAO), triethylborane (BEt3), 

dimethylzinc (ZnEt2), phenyllithium (LiPh), sodium hydroxide (NaOH), and deuterium generation reagent 

(DMSO-d6 and CDCl3) are purchased from Energy Chemical and used as supplied without further purification. 

Acetone, phenylacetylene (PA), toluene, dichloromethane (CH2Cl2), tetrahydrofuran (THF), triethylamine 

(NEt3), 2,6-diisopropylaniline (DIPA), ethylenediamine (C2H4(NH2)2), N,N-dimethylformamide (DMF), and 

aniline (C6H5NH2) are also purchased from Energy Chemical and purified by vacuum distillation. 

General information 

1H NMR and 13C NMR spectra of samples obtained in this paper were recorded on an Avance Ⅲ HD 400 

spectrometer at room temperature. Solid-state 13C CP-MAS were recorded on an Avance Ⅲ HD 700 at room 

temperature. The FTIR spectroscopy were recorded on Thermo IS5. Inductively Coupled Plasma-Atomic Emission 

Spectrometry (ICP-AES) were recorded on Agilent 7700. Powder X-ray diffraction (PXRD) were recorded on an Bruker 

D8 Advance spectrometer. The thermogravimetric analysis (TGA) spectra were testeyd by DTG-60 spectrometer. 

Scanning electron microscope (SEM) spectra were recorded on JSM-7500F spectrometer. N2 adsorption-desorption 

isotherms were tested by Quantachrome Instruments v3.01. The molecular weights and the molecular weight 

distributions of the polymer samples were determined at 35 °C by gel permeation chromatography (GPC) on a 

WATERS 1515 apparatus. THF was employed as the eluent at a flow rate of 1 ml/min. The calibration was made by 

polystyrene standard EasiCal PS-1 (PL Ltd). CD spectra were tested on JASCO Corp J-810. Photoluminescence (PL) 

were tested by F-7000 FL Spectrophotometer. The dynamic light scattering measurement were tested by Zetasizer 

Nano. The UV/Vistransmittance and UV absorption were obtained on Ultraviolet spectrophotometer (TU-1901). 

Synthesis of 2,2’-bipyridine-5,5’-dicarboxylic acid (H2BPY) 

Compound H2BPY were synthesized by previously reported methods.1 1H NMR (400 MHz, DMSO-d6) δ 

13.54 (s, 2H), 9.20 (s, 2H), 8.57 (d, J = 8.1 Hz, 2H), 8.45 (d, J = 8.3 Hz, 2H). 

Synthesis of UiO-67-BPY 

The preparation of UiO-67-BPY was based on reported literature.2-3 ZrCl4 (23.3 mg, 0.1 mmol), 2,2’-

bipyridine-5,5’-dicarboxylic acid (H2BPY) (24.4 mg, 0.1 mmol) and glacial acetic acid (2 mL) were placed in a 

50 mL teflon-capped flask with 20 mL DMF. The mixture was treated with ultrasonification for 2 hours, then 

heated to 120 °C for 3 days. After cooling, powders were collected and washed with fresh DMF and 

methanol for 3 times, respectively. After soaking, the powders were evacuation under dynamic vacuum at 

100 °C for 10 hours to gain dried white powder solid. 

Synthesis of UiO-67-BPY-X%Rh 

To 20 mLnon-aqueous acetone containing 100 mg UiO-67-BPY, [(nbd)RhCl]2 (15.3 μmol, 30.6 μmol, 122.4 

μmol) was added. The mixture was kept for 12 hours at room temperature (RT), and successively washed 

with acctone (20 mL × 4). The yellow solids (UiO-67-BPY) were dried under vacuum at 100 °C for 24 hours. 

Then different loads catalysts were obtained (c: UiO-67-BPY-2.76 wt% Rh, d: UiO-67-BPY-5.66 wt% Rh, e: 

UiO-67-BPY-11.41 wt% Rh determined by ICP-AES. c, d and e was dissolved in concentrated nitric acid). 

Table S1. Rh contents of UiO-67-BPY- Rhs 
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sample c d e 

Rh contents 2.76 wt % 5.66 wt % 11.41 wt % 

Synthesis of (nbd)Rh(Me2BPY)Cl 

368 mg (2.0 mmol) Me2BPY, 461 mg (1.0 mmol,) [(nbd)RhCl]2 dissolved in 20 mL non-aqueous acctone. 

The mixture was kept for 12 hours at RT, and successively washed with acctone (20 mL×4). The red solids 

(nbd)Rh(Me2BPY)Cl were dried under vacuum at 50 °C for 24 hours. 1H NMR (400 MHz, DMSO-d6) δ 8.43 (d, J 

= 8.3 Hz, 2H), 8.06 (d, J = 8.1 Hz, 2H), 7.75 (s, 2H), 4.15 (d, J = 1.9 Hz, 4H), 3.89 (s, 2H), 3.31 (s, 3H), 2.38 (s, 

6H), 1.32 (s, 2H).13C NMR (101 MHz, DMSO-d6) δ 152.47 (s), 149.05 (s), 140.01 (s), 137.03 (s), 122.10 (s), 

60.88 (s), 53.45 (d, J = 9.4 Hz), 48.99 (s), 17.79 (s). IR (KBr, ν/cm-1): 3416 (s), 3053 (w), 3010 (m), 2920 (m), 

2358 (w), 2350 (w), 1606 (m), 1578 (m), 1502 (m), 1475 (s), 1411 (m), 1392 (m), 1318 (m), 1311 (m), 1300 

(w), 1250 (m), 1230 (m), 1168 (m), 1145 (w), 1108 (w), 1076 (w), 1052 (m), 994 (w), 976 (w), 960 (m), 947 

(m), 892 (w), 883 (m), 849 (s), 799 (m), 772 (m), 747 (w), 724 (s), 698 (w), 609 (m). 

Synthesis of monomers (HPA, TPA, TPPA) 

The functional monomers were synthesized by previously reported methods.4-5 HPA, 1H NMR (400 MHz, 

CDCl3) δ 7.47 (s, 2H), 4.67 (d, J = 2.9 Hz, 4H), 3.97 – 3.80 (m, 2H), 3.03 (s, 1H), 2.14 (d, J = 22.0 Hz, 2H), 1.87 – 

1.72 (m, 2H), 1.54 – 1.41 (m, 2H), 1.29 (d, J = 20.7 Hz, 17H), 0.88 (t, J = 6.7 Hz, 3H). TPA, 1H NMR (400 MHz, 

CDCl3) δ 7.22 (d, J = 7.8 Hz, 2H), 7.10 (s, 10H), 7.00 (d, J = 8.4 Hz, 8H), 3.03 (s, 1H). TPPA, 1H NMR (400 MHz, 

CDCl3) δ 7.52 (s, 4H), 7.35 (d, J = 7.5 Hz, 2H), 7.19 – 7.00 (m, 19H), 3.12 (s, 1H). 

Procedure for polymerization of PA and Its Derivatives. 

Under nitrogen atmosphere, the catalyst was dispersed in 3 mL solvent in a round-bottomed flask. Then 

monomer and cocatalysts were added in the above mixture. The colour of the mixture deepened rapidly. 

The mixture was stirred vigorously at room temperature and became viscous. The mixture was added to 

methanol (30 mL) with acetic acid (0.05 mL) in a 100 mL beaker. And then some solids (or powders) were 

precipitated and filtered to give polymer. The obtained polymer was washed with 50 mL methanol and dried 

at 40 °C under vacuum overnight. When polymerization solvent was water, the polymerization took place in 

the air. (For example: Table 2, entry 2. 2 mg c was dispersed in 3 mL toluene, after 10 mins 0.1 mL PA was 

added in the mixture. After stirring for 1 min, the mixture was added to methanol with acetic acid, which got 

yellow PPA). 

The formula for calculating the activity of catalyst: 

� = m�������/(��� ∙ t) 

A: the activity of polymerization (g·molRh
−1·h−1), mpolymer: the mass of polymer (g), t: the reaction time of 

polymerization (h), nRh: moles of rhodium in the catalysts (mol) 

��� = m��������� ∙ω��/M�� 

m catalysts: the mass of catalysts (g), MRh: the relative molecular weight of rhodium, ωRh: the mass fraction 

of rhodiumin in the catalysts (determined by ICP-AES). 

The formula for calculating the cis-selective of polyphenylacetylene (PPA): 

The diverseisomer contents of PPA were calculated from the 1H NMR spectra.6-7 

%	��� = (6	I��/I�����) × 100 

IH1 in eq 1 means the integrate area of one alkynyl proton of PA unit at 5.84 ppm, Itotal is the total integrate 

area of aryl protons of the benzene ring unit at 6.94 ppm, 6.78 ppm (trans), and 6.63 ppm and alkynyl proton 

of PA unit at 5.84 ppm in the 1H NMR spectrum. 
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Recycling Tests of Catalyst 

The recycling polymerization test was carried out with recycled catalyst by centrifugation (5 min) using the 

same conditions like the first run. The recovered catalyst just washed by THF three times and reused for the 

next polymerization. With the increase of cycle times, the color of supernatant becomes lighter and lighter, 

while the color of catalyst of c changed from beige to brown (Figure S13). A new portion of cocatalyst AlMe3 

and PA was then added and the polymerization was carried out in the usual method. 

Table S2. Recycling experiments of PA polymerization by ca 

Cycle 
times 

Cat. Cocat. Sol. 
Y 

(%) 
Act.b 

(106) 
Cis-Sel.c 

(%) 
Mn 

(104)d 
Mw/Mn

d 

1 c AlMe3 THF 100 10.6 93 2.4 2.21 
5 c AlMe3 THF 85 9.0 94 4.1 2.13 

10 c AlMe3 THF 15 1.6 99 5.1 1.69 
1 c - H2O 86 9.2 96 2.8 1.94 
5 c - H2O 75 8.0 96 4.2 2.80 

10 c - H2O 13 1.4 97 5.0 2.71 
aConditions: [MOF-Rh] = 2 mg, UiO-67-BPY-2.76 wt% Rh (c) = 0.54 μmol Rh, AlMe3/[Cat.] =1, [Mon.] = 918 

μmol, 3 mL solvent, 1 min. bActivity: g·molRh
−1·h−1. cDetermined by 1H NMR spectrum in CDCl3 at 25 oC. 

dDetermined by GPC in THF at 35 oC on the basis of a polystyrene calibration. 

 
Figure S1. 1H NMR spectra of 2, 2’-bipyridine-5,5’-dicarboxylic acid (H2BPY) in DMSO-d6. 
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Figure S2. 1H NMR spectra of (nbd)Rh(Me2BPY)Cl (b) in DMSO-d6. 

 

 
Figure S3. 13C NMR spectra of (nbd)Rh(Me2BPY)Cl (b) in DMSO-d6. 
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Figure S10. Verify photos of heterogeneous systems of PA polymerization catalysed by 
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Figure S12. In-situ 1H NMR spectra of PA polymerization catalyzed by (nbd)Rh(Me
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polymerization in water.) 
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Figure S15. 1H NMR spectra of PPA in Table 2, entry 2 in CDCl3. A small amount of solvent is left in the 

polymer because it will be hard to dissolve when fully dried.(cis-PPA has one alkynyl proton of PA unitat 5.84 

ppm, while trans-PPA has acharacteristic broad signal at about 7 ppm (around 6.95 ppm, 6.78 ppm, and 6.63 

ppm).7-8 

 
Figure S16. 1H NMR spectra of PPAs in Table 2, entries 2-16. 
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Figure S17. 1H NMR spectra of PPAs in Table 2, entries 17-31. 
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Figure S18. 1H NMR spectra of PPAs in Table 2, entries 32-46. 
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Figure S21. GPC profiles of the PPA in Table 2, entry 2. 

 

 
Figure S22. GPC profiles of the PPA in Table 2, entry 3. 

 

 
Figure S23. GPC profiles of the PPA in Table 2, entry 4. 

 

 
Figure S24. GPC profiles of the PPA in Table 2, entry 5. 



 

18 

 

 

 
Figure S25. GPC profiles of the PPA in Table 2, entry 6. 

 

 

Figure S26. GPC profiles of the PPA by in Table 2, entry 7. 

 

 
Figure S27. GPC profiles of the PPA in Table 2, entry 8. 
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Figure S28. GPC profiles of the PPA in Table 2, entry 9. 

 

 
Figure S29. GPC profiles of the PPA in Table 2, entry 10. 

 

 
Figure S30. GPC profiles of the PPA in Table 2, entry 11. 
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Figure S31. GPC profiles of the PPA in Table 2, entry 12. 

 

 
Figure S32. GPC profiles of the PPA in Table 2, entry 13 

 

 

Figure S33. GPC profiles of the PPA in Table 2, entry 14 

 



 

21 

 

 

Figure S34. GPC profiles of the PPA in Table 2, entry 15. 

 

 
Figure S35. GPC profiles of the PPA in Table 2, entry 16. 

 

 
Figure S36. GPC profiles of the PPA in Table 2, entry 17. 
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Figure S37. GPC profiles of the PPA in Table 2, entry 18 

 

 
Figure S38. GPC profiles of the PPA in Table 2, entry 19 

 

 

Figure S39. GPC profiles of the PPA in Table 2, entry 20 
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Figure S40. GPC profiles of the PPA in Table 2, entry 21 

 

 
Figure S41. GPC profiles of the PPA in Table 2, entry 22 

 

 
Figure S42. GPC profiles of the PPA in Table 2, entry 23 
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Figure S43. GPC profiles of the PPA in Table 2, entry 24 

 

 
Figure S44. GPC profiles of the PPA in Table 2, entry 25 

 

 
Figure S45. GPC profiles of the PPA in Table 2, entry 26 
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Figure S46. GPC profiles of the PPA in Table 2, entry 27 

 

 
Figure S47. GPC profiles of the PPA in Table 2, entry 28 

 

 

Figure S48. GPC profiles of the PPA in Table 2, entry 29 
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Figure S49. GPC profiles of the PPA in Table 2, entry 30 

 

 
Figure S50. GPC profiles of the PPA in Table 2, entry 31 

 

 

Figure S51. GPC profiles of the PPA in Table 2, entry 32 
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Figure S52. GPC profiles of the PPA in Table 2, entry 33 

 

 

Figure S53. GPC profiles of the PPA in Table 2, entry 34 

 

 
Figure S54. GPC profiles of the PPA in Table 2, entry 35 
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Figure S55. GPC profiles of the PPA in Table 2, entry 36 

 

 
Figure S56. GPC profiles of the PPA in Table 2, entry 37 

 

 
Figure S57. GPC profiles of the PPA in Table 2, entry 38 
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Figure S58. GPC profiles of the PPA in Table 2, entry 39 

 

 
Figure S59. GPC profiles of the PPA in Table 2, entry 40 

 

 
Figure S60. GPC profiles of the PPA in Table 2, entry 41 
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Figure S61. GPC profiles of the PPA in Table 2, entry 42 

 

 

Figure S62. GPC profiles of the PPA in Table 2, entry 43 

 

 

Figure S63. GPC profiles of the PPA in Table 2, entry 44 

 



 

 

Figure S6

Figure S65. GPC profiles of the PPA in Table 2, entry 46

 

Figure S66. GPC profiles of the PPA

Mw/Mn = 2.13 ). 
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64. GPC profiles of the PPA in Table 2, entry 45 

 

GPC profiles of the PPA in Table 2, entry 46 

f the PPA catalyzed by c after recycling 5 times in THF

 

 

 

 
HF (Mn = 4.14×104 g·mol-1 
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Figure S67. GPC profiles of the PPA catalyzed by c after recycling 10 times in THF (Mn = 5.08×104 g·mol-1 

Mw/Mn = 1.69 ). 

 

Figure S68. GPC profiles of the PPA catalyzed by c after recycling 5 times in H2O (Mn = 5.02 ×104 g·mol-1 

Mw/Mn = 2.80) 

 

 
Figure S69. GPC profiles of the PPA a catalyzed by c after recycling 10 times in H2O (Mn = 4.20 ×104 g·mol-1 

Mw/Mn = 2.71) 



 

 

Figure S70. 1H NMR spectra of HPA

Figure S71. 1H NMR spectra of PHPA

be hard to dissolve when fully dried. 
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HPA in CDCl3 

HPA in CDCl3. A small amount of solvent is left in the polymer because it will 

 

 

 
. A small amount of solvent is left in the polymer because it will 



 

 

Figure S72. 1H NMR spectra of TPA

 

 

Figure S73. 1H NMR spectra of PTPA 

be hard to dissolve when fully dried. 
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TPA in CDCl3 

 in CDCl3. A small amount of solvent is left in the polymer because it will 
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Figure S74. 1H NMR spectra of TPPA

 

Figure S75. 1H NMR spectra of PTPPA

will be hard to dissolve when fully dried.
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TPPA in CDCl3 

TPPA in CDCl3. A small amount of solvent is left in the polymer because it 

will be hard to dissolve when fully dried. 

 

 

. A small amount of solvent is left in the polymer because it 
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Figure S76. FTIR spectra of HPA (black) and PHPA (red). 
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Figure S77. FTIR spectra of TPA (black) and PTPA (red). 
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Figure S78. FTIR spectra of TPPA (black) and PTPPA (red). 

 



 

37 

 

 

Figure S79. GPC profiles of the PHPA in Table 3, entry 1 

 

 
Figure S80. GPC profiles of the PTPA in Table 3, entry 2 

 

 
Figure S81. GPC profiles of the PTPPA in Table 3, entry 3 
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Figure S82.GPC profiles of the PHPA in Table 3, entry 4 

 

 

Figure S83. GPC profiles of the PHPA in Table 3, entry 5 

 

 

Figure S84. GPC profiles of the PTPA in Table 3, entry 6 

 



 

39 

 

 

Figure S85. GPC profiles of the PTPPA in Table 3, entry 7 

 

 

Figure S86. GPC profiles of the PHPA in Table 3, entry 11 

 

 

Figure S87. GPC profiles of the PTPA in Table 3, entry 12 
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Figure S88. GPC profiles of the PTPPA in Table 3, entry 13 

 

 

Figure S89. Photos of Photoluminescence (PL) spectra of TPA and TPPA in THF/H2O mixtures with different 

water fractions. (concentration: 1 × 10–5 M, excitation wavelength: 365 nm) 
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Figure S90. The UV/Vis transmittance spectra of (a) TPA and (b) PTPA (Table 3, entry 6) with the water 

fraction in the THF/water mixture ranging from 0 to 99%. 
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Figure S91. UV absorption spectra of (a) TPA and (b) PTPA (Table 3, entry 6) with the water fraction in the 

THF/water mixture ranging from 0 to 99%. 

 

0 200 400 600 800 1000

 THF
 THF/H

2
O(20/80)

Size (d nm)

 I
n

te
n

s
it

y
 (

p
e

rc
e

n
t)

 

 

(a)

300 600 900 1200 1500 1800

(b)
In

te
n

s
it

y
(p

e
rc

e
n

t)

Size (d.nm)

 THF
 THF/H

2
O(20/80)

 

 

 
Figure S92. The dynamic light scattering measurement of (a) TPA and (b) PTPA (Table 3, entry 6) at 80% 

water fraction in the THF–water mixture. 
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Figure S93. The UV/Vis transmittance spectra of (a) TPPA and (b) PTPPA (Table 3, entry 7) with the water 

fraction in the THF/water mixture ranging from 0 to 99% 
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Figure S94. UV absorption spectra of (a) TPPA and (b) PTPPA (Table 3, entry 7) with the water fraction in the 

THF/water mixture ranging from 0 to 99%. 
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Figure S95. The dynamic light scattering measurement of (a) TPPA and (b) PTPPA (Table 3, entry 7) at 80% 

water fraction in the THF–water mixture. 

477.12 477.20 477.28 477.36 477.44

  

m/z

447.2245

429.5 430.0 430.5 431.0 431.5 432.0

  

m/z

431.2127

 

Figure S96. High resolution ESI-MS spectra of oligomer obtained from PA polymerization by use of 

homogeneous Rh complex b under the PA: 3b molar ratio 5: 1 in toluene. 

The PA monomer can serve as termination agent in the PA coordinative polymerization without other 

chain transfer agent and the termination reaction between Rh-polymer and C-H of terminal alkyne of PA 

monomer can occur to give a new Rh-C≡C-Ph active species and a polymer chain. High resolution ESI-MS 

spectra of oligomer obtained from PA polymerization by use of the homogeneous Rh complex b under the 
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PA: 2 molar ratio 5: 1 confirmed the formation of a series of peaks at 431.2127 and 447.2245 m/z, which 

were attributed to C6H5-C≡C-[HC=C(Ph)]3-H + Na+, C6H5-C≡C-[HC=C(Ph)]3-H + K+, respectively, demonstrated 

that phenylethynyl (C6H5-C≡C) and hydrogen (H) can serve as the end groups of polymer chains 

 

References 

1 N. Chigira, F. Dai, Y. Nonaka, K. Sato, Y. Amano, M. Sekiguchi, M. Inokuchi, M. Hagio and T. Hasegaw, Tetrahedron, 
2018, 74, 5898–5907. 

2 B. B. Li, Z. F. Ju, M. Zhou, K. Z. Su and D. Q. Yuan, Angew. Chem. Int. Ed., 2019, 58, 687–7691. 
3 B. An, J. Z. Zhang, K. Cheng, P. F. Ji, C. Wang and W. B. Lin, J. Am. Chem. Soc., 2017, 139, 3834–3840. 
4 Y. Q. Qu, T. Aoki, M. Teraguchi and T. Kaneko, Polymer, 2018, 156, 39–43. 
5 K. Xiang, L. J. He, Y. M. Li, C. H. Xu and S. H. Li, RSC Adv., 2015, 5, 97224–97230. 
6 P. Mastrorilli, C. F. Nobile, A. Rizzuti, G. P. Suranna, D. Acierno and E. Amendolac, J. Mol. Catal. A: Chem., 2002, 178, 

35–42. 
7 C. I. Simionescu and V. J. Percec, Polym. Sci. Polym. Symp., 1980, 67, 43–71. 

8 M. A. Casado, A. Fazal and L. A. Oro, Arab. J. Sci. Eng., 2013, 38, 1631–1646. 


