Temporal control of RAFT polymerization via Magnetic Catalysis

Amin Reyhani,^{a,‡} Omid Mazaheri,^{a,b,‡} Masood S. Alivand,^a Kathryn A. Mumford,^a and Greg G. Qiao*^a

^aDepartment of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia. ^bSchool of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.

*Corresponding author: gregghq@unimelb.edu.au *These authors contributed equally.

Contents	Page
Characterization data of the magnetic $Fe_3O_4@Fe(II)$ -MOF catalyst	2
Zeta potential of the magnetic catalysts	4
Characterization data of the synthesized polymers via the magnetic Fenton-RAFT	5
Kinetic studies	6
Temporal control of Fenton-RAFT polymerization	7

Fig. S2 (a) STEM-HAADF images of Fe₃O₄@Fe(II)-MOF, and (b-d) the corresponding EDS mappings.

Fig. S3 XRD of Fe₃O₄ and Fe₃O₄@Fe(II)-MOF particles.

Fig. S4 Raman spectra of Fe₃O₄, Fe(II)-MOF, and Fe₃O₄@Fe(II)-MOF particles.

Fig. S5 DLS spectra of Fe_3O_4 and $Fe_3O_4@Fe(II)$ -MOF particles.

- Zeta potential of the magnetic catalysts

Fig. S6 Zeta potential of the Fe₃O₄@Fe(II)-MOF NPs at different concentrations as 0.8, 1.6, and 3.2 mg mL⁻¹ obtained from three runs.

- Characterization data of the synthesized polymers via the magnetic Fenton-RAFT

Fig. S7 SEC chromatograms of the synthesized PDMAs via the magnetic Fenton-RAFT after 24 h with different concentrations of $Fe_3O_4@Fe(II)$ -MOF catalysts.

- Kinetic studies

Table S1. Characterization data of the synthesized polymers within the kinetic studies on the magnetic Fenton-RAFT polymerization of DMA with $[Fe(II)-MOF@Fe_3O_4] = 1.6 \text{ mg mL}^{-1} \text{ and } [H_2O_2]_0 = 35 \text{ mM}.$

Time	Conversion	M _{n,the.}	M _{n, SEC/LS}	Ð		
(h)	(%) ^a	(Da) ^b	(Da) ^c	(-) ^c		
0	0	-	-	-		
1	40	8,200	8,500	1.03		
2	49	10,000	10,500	1.04		
3	55	11,200	11,100	1.04		
4	60	12,200	12,000	1.03		
5	64	13,000	13,600	1.02		
6	65	13,200	13,900	1.02		
^a conversion values were calculated from ¹ H NMR analysis.; ^b theoretical molecular						
weights were calculated according to this formula: $M_{n,the.} = DP \times conv. \times MW_{monomer}$						
+ MW _{RAFT agent} .; ^c experimental molecular weight and dispersity values were						
obtained from LS analysis coupled with SEC.						

- Temporal control of Fenton-RAFT polymerization

Table	S2.	Characterization	data	of	the	synthesized	PDMAs	within	the	temporal	control	of	Fenton-RAFT
polym	polymerization with [Fe(II)-MOF@Fe ₃ O ₄] = 1.6 mg mL ⁻¹ and $[H_2O_2]_0$ = 35 mM.												

Time	Conversion	M _{n,the} .	M _{n, SEC/LS}	Ð			
(h)	(%) ^a	(Da) ^ь	(Da) ^c	(-) ^c			
0	0	-	-	-			
1	45	9,200	9,400	1.05			
2	45	9,200	9,350	1.05			
3	51	10,400	10,350	1.04			
4	51	10,400	10,450	1.04			
5	59	12,000	11,900	1.03			
6	59	12,000	11,950	1.03			
7	66	13,350	13,600	1.03			
^a conversion values were calculated from ¹ H NMR analysis.; ^b theoretical molecular							
weights were calculated according to this formula: $M_{n,the.} = DP \times conv. \times MW_{monomer} + DP \times conv. \times MW_{monomer}$							
$MW_{RAFT agent}$; ^c experimental molecular weight and dispersity values were obtained							
from LS analysis coupled with SEC.							