Supporting Information

Functionalisation and stabilisation of polymeric arsenical nanoparticles prepared by sequential reductive and radical cross-linking

Joji Tanaka^{‡f}, Alexander Evans[‡], Pratik Gurnani[†], Andrew Kerr, Paul Wilson*

University of Warwick, Department of Chemistry, Coventry, CV4 7AL, UK

SUPPLEMENTARY TABLES & FIGURES

Fig. S1. $^1\mathrm{H}$ NMR (D2O) of the final polymer P1 - P4

Fig. S2. SEC (DMF) of the arsenic functional block copolymers P1 - P4 showing the first block (black), chain extension extension (red) and removing the pinacol groups (blue).

Fig. S3. Particle size distribution curves of P1 - P4 by dynamic light scattering (1 mg/mL, H₂O) analysis at 25 °C and 60 °C

Fig. S4. Particle size distribution curves of $NP_{As(I)-n}$ (n = 4, 11, 15, 18) by DLS (1 mg/mL, H₂O) analysis at 25 °C and 60 °C

Fig. S5. AFM (left) and TEM (right) of $NP_{As(I)-18}$ (scale bar = 100 nm)

Table S1. Particle size of NP_{PgOH-n} by dynamic light scattering at 25 °C and 60 °C in aqueous solution (1 mg/mL) (PDI calculated using Eq 1)

Fig S6A: DLS Correlation coefficient and intensity distribution for NP_{PgOH-4} as function of temperature

Fig S6B: DLS Correlation coefficient and intensity distribution for $NP_{PgOH-11}$ as function of temperature

Fig S6C: DLS Correlation coefficient and intensity distribution for $NP_{PgOH-15}$ as function of temperature

Fig. S6D: DLS Correlation coefficient and intensity distribution for $NP_{PgOH-18}$ as function of temperature

Table S2. Particle size of NP_{PgNH-n} and NP_{PgAc-n} by dynamic light scattering at 25 °C and 60°C in aqueous solution (1 mg/mL) (PDI calculated using Eq 1)

			25 °C		60 °C		
		$\boldsymbol{D}_{h}\left(\mathrm{nm} ight)$	PDi	$\boldsymbol{D}_{\boldsymbol{h}}\left(\mathrm{nm} ight)$	PDi		
P2	NP _{PgNH-11}	30.9	0.138	28.2	0.126		
	NP _{PgAc-11}	17.6	0.014	20.3	0.102		
P3	NP _{PgNH-15}	24.9	0.122	23.5	0.142		
	NP _{PgAc-15}	21.5	0.108	22.5	0.110		
P4	NP _{PgNH-18}	23.5	0.022	23.5	0.143		

Fig. S7. Particle size distribution curves of NP_{PAc-n} (n = 11, 15, 18) by dynamic light scattering (1 mg/mL, H₂O) analysis at 25 °C and 60 °C.

Fig. S8. Particle size distribution curves of NP_{PAc-n} (n = 11, 15, 18) by dynamic light scattering (1 mg/mL, H₂O) analysis at 25 °C and 60 °C.

Fig. S9. Infrared spectra of P4 (black), $NP_{PgOH-18}$ (red), $NP_{PgNH-18}$ (green) and NP_{PAc-18} (purple) indicating reduction and modification of the pendent arsenic acid (As(V)) groups via changes in the As-O region.

Fig. S10. AFM (left) and TEM (right) of $NP_{PgNH-18}$ (bottom row scale bar = 100 nm, top row scale bar = 500 nm)

Fig. S11. AFM (left) and TEM (right) of NP_{PAc-18} (bottom row scale bar = 100 nm, top row scale bar = 500 nm)

Fig. S12. Particle size distribution curves of $NP_{PgNH-18}$ by dynamic light scattering (1 mg/mL) as function of time in aqueous H_2O_2 (5mM, left) and GSH (5mM, right)

Fig. S13. Particle size distribution curves of NP_{PAc-18} by dynamic light scattering (1 mg/mL) as function of time in aqueous H_2O_2 (5mM, left) and GSH (5mM, right)

Fig. S14. Reaction scheme and ¹H-NMR spectrum for the synthesis of propargyl-*O*-rhodamine-B ester

Fig. S15A. ¹H-NMR (D_2O) of NP_{Rh-18} (100 mg/mL) showing obscured vinyl proton at 6.86 ppm.

Fig. S15B. ¹H-NMR (CDCl₃) of NP_{Rh-18} (100 mg/mL) showing obscured vinyl proton at 6.54 ppm.

Fig. S16. Particle size distribution curves of NP_{Rh-n} (n = 4, 11, 15, 18) by dynamic light scattering (1 mg/ml, H₂O) analysis at 25 °C and 60 °C.

Table S3	• Particle	size of	NP _{Rh-n}	by dy	namic	light	scatteri	ng at	25 °C	and	60 °	°C in	aque	ous
solution ((1 mg/mL) (PDI c	alculate	d usir	ng Eq 1)								

			25 °C		60 °C			
		$\boldsymbol{D}_{\boldsymbol{h}}\left(\mathrm{nm}\right)$	PDi	$\boldsymbol{D}_{h}\left(\mathrm{nm} ight)$	PDi			
P1	NP _{Rh-4}	19.6	0.129	16.0	0.102			
P2	NP _{Rh-11}	26.7	0.098	13.8	0.099			
P3	NP _{Rh-15}	18.3	0.102	13.8	0.099			
P4	NP _{Rh-18}	16.3	0.131	19.0	0.113			

Fig. S17. Particle size distribution curves of NP_{Rh-n} (n = 4, 18) by dynamic light scattering (1 mg/mL) as function of time in aqueous H₂O₂ (5mM, top row) and GSH (5mM, bottom row)

Fig. S18. ¹H NMR experiment (D₂O, H₃PO₂, KI, 60 °C) to investigate potential hydrolysis of propargyl-O-rhodamine B ester during cross-linking *via* RCRAC. Preservation of the methylene signal (H_j) indicate that the ester does not undergo hydrolysis under the reaction conditions.

Fig. S19. UV-Vis calibration curves of propargyl-*O*-rhodamine B ester yielding theoretical crosslinking densities of $NP_{Rh-18} = 12$ %; $NP_{Rh-15} = 12$ %; $NP_{Rh-11} = 7.1$ %; $NP_{Rh-4} = 32$ %.

Fig. S20. Fluorescence calibration curves for NP_{Rh-n} (n = 4, 11, 15, 18). Concentration at the linear region was used for normalisation. At higher concentration, self-quenching of the fluorophore was observed (red dots).

Table S4. Normalisation factors calculated and applied for NP_{Rh-n} from the gradients of the linear regions of concentration/ fluorescence intensity curves measured from 5 – 50 µg mL-1 at the wavelengths used to monitor cellular uptake (Fig. S20).

	Slope	Normalisation factor
NP _{Rh-4}	29.1	1.33
NP _{Rh-11}	22.5	1.72
NP _{Rh-15}	33.9	1.14
NP _{Rh-18}	38.6	1.00

Fig. S21. Uptake of **NP**_{Rh-n} (n = 4, 11, 15 and 18) by PC3 cells after 2 hours of incubation (at 37 °C).

Fig. S22. Uptake of NP_{Rh-n} (n = 4, 11, 15 and 18) by PC3 cells after 24 hours of incubation (at 37 °C).

Fig. S23. Confocal fluorescent microscopy images of PC3 cells with free rhodamine B. (A) Hoechst 33258; (B) Rhodamine-B; (C) Lysotracker green; (D) Brightfield image; (E) Overlay of channels showing localisation of Rhodamine B relative to the lysosomes (scale bar = 30 µm).

Fig. S24. Confocal fluorescent microscopy images of PC3 cells with free rhodamine B. (A) Hoechst 33258; (B) Rhodamine-B; (C) Mitotracker green; (D) Brightfield image; (E) Overlay of channels showing localisation of Rhodamine B relative to the lysosomes (scale bar = 30 µm).