Supporting information for

Facile preparation of polycarbonates from Bio-based eugenol and 2methoxy-4-vinylphenol

Mengqian Huang,^a De Bai,^a Qin Chen,^a Changbo Zhao,^a Tianhua Ren,^a Caijuan Huang,^a Michael

North,^b Haibo Xie^a*

^aDepartment of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Guizhou University, Huaxi District, Guiyang, P. R.

China, 550025. Email: hbxie@gzu.edu.cn

^bGreen Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.

S1. Materials and Methods

S1.1 Materials. Eugenol (99%) and triphosgene (99%) were purchased from Macklin and used as received. 2-Methoxy-4-vinylphenol (\geq 98%), 1,2-ethanedithiol (EDT, 97%), 1,3-propanedithiol (PDT, 98%), 1,10-decanedithiol (DDT, 96%), the Hoveyda-Grubbs 2nd generation catalyst (\geq 97%) 1,4-benzoquinone (99%), ethyl vinyl ether (98%) and 3-chloroperbenzoic acid (86%) were obtained from Aladdin and used as received. 1,6-hexanedithiol (HDT,98%) was supplied by Energy Chemical. Other common organic solvents were obtained through commercial resources. Before use, calcium hydride was used to distill dichloromethane, tetrahydrofuran and triethylamine to remove water. They were stored by adding activated Davison 4 Å molecular sieves and placed in a vacuum drying oven. Other chemicals were used as received.

S1.2 Methods.

NMR spectra were recorded on a JOEL ECX500 spectrometer (400 MHz for ¹H NMR and 101 MHz for ¹³C NMR) with tetramethylsilane (TMS) as an internal reference. (DMSO-d₆, $\delta 2.50$ ppm for ¹H NMR and 39.52 ppm for ¹³C NMR; CDCl₃, $\delta 7.26$ ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). Fourier transform infrared spectra (FTIR) were recorded on a Thermoscientific (Nicolet iS50) FTIR spectrometer at room temperature ranging between 500–4000 cm⁻¹. Molecular weights (M_n) and dispersities ($D = M_w/M_n$) were determined by size-exclusion chromatography (SEC). THF or DMF were used as eluent and the system was calibrated with 10 PMMA standards. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to determine thermal properties under a nitrogen atmosphere. Approximately 10 mg of the sample was heated from room temperature to 750 °C at a rate of 10 °C/min. After cooling down to –90 °C at the same rate, they were reheated to 250 °C for DSC analysis. The glass transition temperatures (T_g) were collected from the second heating scan.

S1.3. Synthesis of monomers¹

S1.3.1 Bis(4-allyl-2-methoxyphenyl) carbonate (2a, BAMC)

Triethylamine (21.0 ml, 150 mmol) was added to a solution of eugenol (18.7 ml, 120 mmol) in CH₂Cl₂ (100 mL), and stirred at 0 °C for 10 min. Triphosgene (6.0 g, 20 mmol) was dissolved in CH₂Cl₂ (10 mL), and the resulting solution was slowly dropped into the mixture and stirred at 0 °C for 2 h. 1M HCl was used to quench the reaction, and the reaction solution was washed with saturated salt until neutral. Dichloromethane (3×40 mL) was used to extract the inorganic phase. The organic phases were combined and dried over anhydrous sodium sulfate. The final compound was obtained as a white solid, which waspurified by recrystallized from CH₂Cl₂/hexane. Yield: 94%. Mp 83.1 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, 2H, aromatic protons), 6.88–6.72 (m, 4H, aromatic protons), 5.96 (2H, -CH=), 5.19–5.01 (m, 4H, =CH₂), 3.88 (s, 6H, -OCH₃), 3.39 (d, 4H, -CH₂-). ¹³C NMR (101 MHz, DMSO-d₆) δ 151.00, 150.52, 139.59, 137.77, 137.33, 121.98, 120.32, 116.15, 113.24, 55.89, 39.30.

S1.3.2 Bis(2-methoxy-4-vinylphenyl) carbonate (2b, BMVC)

Triethylamine (2.1 ml, 15 mmol) was added to a solution of 2-methoxy-4-vinylphenol (1.8 g, 12 mmol) in CH₂Cl₂ (30 mL), and stirred at 0 °C for 10 min. Triphosgene (0.6 g, 2 mmol) was dissolved in CH₂Cl₂ (10 mL), and the resulting solution was slowly dropped into the mixture and stirred at 0 °C for 2 h. 1M HCl was used to quench the reaction, and the reaction solution was washed with saturated salt until neutral. Dichloromethane (3×40 mL) was used to extract the inorganic phase. The organic phases were combined and dried over anhydrous sodium sulfate. The crude product was purified by silica gel chromatography using petroleum ether/ CH₂Cl₂ (4:1, v/v) to obtained a white product. Yield: 78%. Mp 101.4 °C , ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, 2H, aromatic protons), 7.06–6.97 (m, 4H, aromatic protons), 6.69 (dd, 2H, -CH=), 5.72 (dd, 2H, =CH₂), 5.27 (d, 2H, =CH₂), 3.92 (s, 6H, -OCH₃). ¹³C NMR (125 MHz, CDCl₃) δ 151.27, 139.89, 137.12, 136.25, 122.37, 118.97, 114.54, 110.26, 56.16.

S1.4. Synthesis of polymers

S1.4.1 ADMET polymerizations

 α,ω -Dienes (3 mmol) were added to a 50 ml Schlenk flask and dissolved in anhydrous CH₂Cl₂ (20 mL). The Hoveyda-Grubbs 2nd generation catalyst (19 mg, 1 mol%) was added to the flask. 1,4benzoquinone (16 mg, 5 mol%) was added to limit isomerization. After the flask was subjected to three freeze-thaw-pump cycles, the reaction mixture was stirred under reflux with an inert atmosphere in an oil bath at 40 °C for 24 hours. Then, 5 mL of ethyl vinyl ether was introduced into the flask to quench the reaction. The final polymer was dissolved into 5 mL of THF and reprecipitated in cold methanol. This washing was repeated three times and the product vacuum-dried at 50 °C for 24 h.

P2a. BAMC (1.063 g, 3.0 mmol), isolated yield (92%).¹H NMR (400 MHz, CDCl₃) δ 7.10 (t, 2H, aromatic protons), 6.79 (d, 4H, aromatic protons), 5.72 (s, 2H, -CH=CH-), 3.87 (s, 6H, -CH₃), 3.52 – 3.27 (m, 4H, -CH₂-).¹³C NMR (101 MHz, CDCl₃) δ 151.67, 151.04, 140.11, 138.61, 130.55, 122.16, 120.60, 113.07, 56.14, 38.94.

P2b. BMVC (0.98 g, 3.0 mmol), isolated yield (90%).¹H NMR (400 MHz, DMSO-d₆) δ 7.37-7.28

(m, 4H, aromatic protons), 7.23 (d, 2H, aromatic protons), 5.76 (s, 2H, -CH=CH-), 3.94 (s, 6H, -CH₃). ¹³C NMR (101 MHz, DMSO-d₆) δ 151.07, 139.05, 136.92, 128.49, 122.54, 119.37, 110.62, 56.11. Add 1H J values.

1.4.2 Synthesis of poly(thioether carbonates) via Thiol-Ene Click reactions.²

These poly(carbonate ester)s with different chain lengths were synthesized by reacting various dithiols with α,ω -diene monomers under UV light for 4 h through thiol-ene click chemistry under stoichiometric balance (molar ratio of C=C to sulfhydryl = 1:1). Taking the reaction of BAMC and EDT as an example, the experimental steps are as follows. BAMC (1.063 g, 3 mmol), EDT (260 ul, 3 mmol), and benzoin dimethyl ether (DMPA, 0.04 g, 5 mol%) as the photoinitiator, were transferred into a 10 mL glass bottle and adequately mixed into a homogeneous phase with 5 ml of tetrahydrofuran. Then the reaction system was irradiated for 4h (λ = 365 nm). The reaction mixture was poured into a large amount of methanol to regenerate the polymers, washed three times, collected by centrifugation, then dried at room temperature.

P2a3a: EDT (260 ul, 3.0 mmol), isolated yield (85%).¹H NMR (400 MHz, DMSO-d₆) δ 7.12 (d, 2H, aromatic protons), 7.00 (s, 2H, aromatic protons), 6.78 (d, 2H, aromatic protons), 3.81 (s, 6H, -CH₃), 2.66 (d, 8H, -CH₂-), 2.50 (s, 4H, -CH₂-), 1.81 (s, 4H, -CH₂-).¹³C NMR (101 MHz, DMSO-d₆) δ 151.06, 150.48, 141.29, 137.64, 121.86, 120.27, 113.19, 55.90, 34.04, 31.35, 30.91, 30.55.

P2a3b: PDT (310 ul, 3.0 mmol), isolated yield (90%).¹H NMR (400 MHz, DMSO-d₆) δ 7.15 (d, 2H, aromatic protons), 7.02 (s, 2H, aromatic protons), 6.81 (d, 2H, aromatic protons), 3.83 (s, 6H, -CH₃), 2.74–2.42 (m, 12H, -CH₂-), 1.94–1.64 (m, 6H, -CH₂-). ¹³C NMR (101 MHz, DMSO-d₆) δ 150.99, 150.45, 141.24, 137.62, 121.80, 120.22, 113.16, 55.87, 34.00, 30.80, 30.50, 29.83, 29.06.

P2a3c: HDT (470 ul, 3.0 mmol), isolated yield (88%).¹H NMR (400 MHz, DMSO-d₆) δ 7.16 (d, 2H, aromatic protons), 7.03 (s, 2H, aromatic protons), 6.82 (d, 2H, aromatic protons), 3.85 (s, 6H, -CH₃), 2.68 (s, 4H, -CH₂-), 2.56–2.38 (m, 8H, -CH₂-), 1.85 (s, 4H, -CH₂-), 1.43 (d, 8H, -CH₂-). ¹³C NMR (125 MHz, DMSO-d₆) δ 151.01, 150.47, 141.30, 137.64, 121.82, 120.24, 113.18, 55.89, 34.06, 30.92 (d, J = 12.6 Hz), 30.57, 29.05, 27.79.

P2a3d: DDT (660 ul, 3.0 mmol), isolated yield (82%).¹H NMR (400 MHz,CDCl₃) δ 7.12 (d, 2H, aromatic protons), 6.78 (dd, 4H, aromatic protons), 3.87 (s, 6H, -CH₃), 2.67 (s, 4H, -CH₂-), 2.50 (s, 8H, -CH₂-), 1.97–1.80 (m, 4H, -CH₂-), 1.63–1.49 (m, 4H, -CH₂-), 1.39–1.26 (m, 12H, -CH₂-). ¹³C NMR (125 MHz, CDCl₃) δ 151.66, 150.91, 141.08, 138.42, 122.05, 120.51, 112.96, 56.09, 34.77, 32.22, 31.51, 31.14, 29.75, 29.54, 29.30, 28.99.

P2b3a: EDT (260 ul, 3.0 mmol), isolated yield (87%).¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, 2H, aromatic protons), 6.82–6.77 (m, 4H, aromatic protons), 3.86 (s, 6H, -CH₃), 2.87–2.73 (m, 12H, -CH₂-).¹³C NMR (125 MHz, CDCl₃) δ 151.54, 151.04, 139.82, 138.80, 122.27, 120.59, 113.06, 56.16, 36.36, 33.80, 32.51.

P2b3b: PDT (310 ul, 3.0 mmol), isolated yield (81%).¹H NMR (400 MHz,CDCl₃) δ 7.13 (d, 2H, aromatic protons), 6.82–6.77 (m, 4H, aromatic protons), 3.87 (s, 6H, -CH₃), 2.88–2.60 (m, 12H, -CH₂-), 1.91–1.82 (m, 2H, -CH₂-). ¹³C NMR (125 MHz, CDCl₃) δ 151.19, δ 151.02, 140.01, 138.76, 122.24, 120.59, 113.05, 56.15, 36.38, 33.66, 31.17, 29.31.

P2b3c : HDT (470 ul, 3.0 mmol), isolated yield (77%).¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, 2H, aromatic protons), 6.82–6.78 (m, 4H, aromatic protons), 3.88 (s, 6H, -CH₃), 2.88–2.73 (m, 8H, -CH₂-), 2.53 (t, 4H, -CH₂-), 1.64-1.57 (dd, 4H, -CH₂-), 1.39-1.31 (dd, 4H, -CH₂-). ¹³C NMR (125 MHz, CDCl₃) δ 151.56, 150.98, 140.15, 138.69, 122.21, 120.57, 113.01, 56.14, 36.44, 33.69, 32.39, 29.56, 28.56.

P2b3d: DDT (660 ul, 3.0 mmol), isolated yield (76%).¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, 2H, aromatic protons), 6.82–6.78 (m, 4H, aromatic protons), 3.88 (s, 6H, -CH₃), 2.88-2.74 (dt, 8H, -CH₂-), 2.53 (t, 4H, -CH₂-), 1.62–1.54 (m, 4H, -CH₂-), 1.36-1.25 (dt, 12H, -CH₂-). ¹³C NMR (125 MHz, CDCl₃) δ 151.54, 150.94, 140.18, 138.64, 122.17, 120.53, 112.97, 56.10, 36.41, 33.65, 32.45, 29.70, 29.53, 29.31, 28.98.

S1.4.3 Oxidation of P2a3a (PO2a3a)

P2a3a (1.095 g, 2.45 mmol) and m-chloroperoxybenzoic acid (m-CPBA, 1.99 g, 9.8 mmol, 85%) were placed in a flask and dissolved in 15 ml of THF. The system was magnetically stirred for 10 h at room temperature and atmospheric pressure. After the reaction was completed, the mixture was poured into a large amount of methanol to regenerate the polymer and washed three times, collected by centrifugation, then dried at 50 °C under vacuum for 24 h to obtained a light pink solid. Yield: 96%.¹H NMR (400 MHz, DMSO-d₆) δ 7.18 (d, 2H, aromatic protons), 7.06 (s, 2H, aromatic protons), 6.84 (d, 2H, aromatic protons), 3.84 (s, 6H, -CH₃), 2.72–2.47 (m, 12H, -CH₂-), 2.03 (s, 4H, -CH₂-).¹³C NMR (101 MHz, DMSO-d₆) δ 150.98, 150.54, 140.43, 137.83, 122.00, 120.34, 113.28, 55.93, 51.50, 44.81, 33.41, 22.93.

Figure S1. ¹H NMR spectrum of **2a** (400 MHz CDCl₃).

Figure S2. ¹³C NMR spectrum of **2a** (101 MHz DMSO-d₆).

Figure S3. ¹H NMR spectrum of **2b** (400 MHz CDCI₃).

Figure S4. ¹³C NMR spectrum of **2b** (125 MHz CDCl₃).

Figure S7. FTIR spectra of BAMC and representative resulting polymers.

Figure S8. ¹H NMR spectrum of **P2a3b** (400 MHz DMSO-d₆).

Figure S9. ¹³C NMR spectrum of **P2a3b** (101 MHz DMSO-d₆).

Figure S10. ¹H NMR spectrum of **P2a3c** (400 MHz DMSO-d₆).

Figure S11. ¹³C NMR spectrum of **P2a3c** (101 MHz DMSO-d₆).

Figure S13. ¹³C NMR spectrum of **P2a3d** (125 MHz CDCI₃).

Figure S15. ¹³C NMR spectrum of **P2b3b** (125 MHz CDCl₃).

Figure S19. ¹³C NMR spectrum of **P2b3d** (125 MHz CDCl₃).

Figure S20. FTIR spectra of BMVC and representative resulting polymers.

Figure S21. ¹H NMR spectrum of **P2a** (400 MHz CDCI₃).

Figure S22. ¹³C NMR spectrum of **P2a** (101 MHz CDCl₃).

Figure S23. ¹H NMR spectrum of **P2b** (400 MHz DMSO-d₆).

Figure S24. ¹³C NMR spectrum of P2b (101 MHz DMSO-d₆).

Figure S25. FTIR spectra of P2a and P2b.

Figure S26. Overlay of ¹H NMR spectra (DMSO-d₆) of **P2a3a** and its oxidation product **PO2a3a**.

Figure S27. ¹³C NMR spectrum of **PO2a3a** (101 MHz DMSO-d₆).

Figure S28. FTIR spectra of P2a3a and its oxidation product

Figure S29. WXRD curves of P2a3a, P2a3b, P2a3c and PO2a3a.

Figure S31. WXRD curves of P2a and P2b.

Figure S33. GPC curve of **P2a3b**.

Figure S34. GPC curve of **P2a3c**.

Figure S35. GPC curve of **P2a3d**.

Figure S36. GPC curve of **P2b3a**.

Figure S37. GPC curve of **P2b3b**.

Figure S39. GPC curve of **P2b3d**.

Figure S40. GPC curve of **P2a**.

Figure S41. GPC curve of **P2b**.

Figure S42. GPC curve of **PO2a3a**.

- 1. D. Bai, Q. Chen, Y. Chai, T. Ren, C. Huang, I. D. Ingram, M. North, Q. Zheng and H. Xie, *RSC advances*, 2018, **8**, 34297-34303.
- 2. Q. Zou, L. Ba, X. Tan, M. Tu, J. Cheng and J. Zhang, *Journal of materials science*, 2016, **51**, 10596-10607.