From Isoselectivity to Syndioselectivity: Lewis Base Regulates Stereochemistry

in 2-Vinylpyridine Polymerization

Yu Wang, Jiang-Bing Duan, Zhao-Xuan Liu, and Tie-Qi Xu*

Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China

1 Experimental Section

1.1 Materials, Reagents, and Methods

All syntheses and manipulations of air- and moisture-sensitive materials were carried out in flamed Schlenk-type glassware on a dual-manifold Schlenk line, on a high-vacuum line, or in an (THF) argon-filled glovebox. Toluene and tetrahydrofuran were distilled from sodium/benzophenone under nitrogen, degassed and stored over fresh Na chips. 2-vinylpyridine (2VP), pyridine (Py), 2-Me-pyridine, 2,6-Me₂-pyridine, 2,6-Ph₂-pyridine, and n-hexane were dried over CaH₂ while stirring for 48 h and distilled before use, and then degassed and stored over 4 Å sieves. C_6D_6 was dried over sodium. CDCl₃ and CD₂Cl₂ were dried over CaH₂, and then degassed and stored over 4 Å sieves. NMR spectra were recorded on a Varian Inova 300 (FT 300 MHz, ¹H; 75 MHz, ¹³C), or a Varian Inova 400 MHz spectrometer, or a Varian Inova 500 MHz spectrometer. ¹H and ¹³C NMR chemical shifts were referred to SiMe₄ (TMS). The molecular weight and molecular weight distribution of the polymers were measured by Agilent Technologies 1260 Infinity GPC (Column: PL gel 5µm MIXED-C) at 30 °C using DMF as an eluent (the flowing rate is 1.0 mL/min) against poly(2-vinylpyridine) (P2VP) standards.

Literature procedures were employed or modified for the preparation of the following complexes: $(C_5Me_4SiMe_3)Sc(CH_2SiMe_3)_2(THF)$, $(C_5Me_4SiMe_3)Y(CH_2SiMe_3)_2(THF)$, $(C_5Me_4SiMe_3)Lu(CH_2SiMe_3)_2(THF)$.¹

1.2 Typical polymerization procedure

1.2.1 Subtituted pyridine as Lewis base

glove box, a toluene solution (1 mL) of $[Ph_3C][B(C_6F_5)_4]$ In the (10 mg, 10 µmol) was added to a toluene solution (1 mL) of (C₅Me₄SiMe₃)Sc(CH₂SiMe₃)₂(THF) (5 mg, 20-mL flask. The 10 µmol) in а mixture was stirred room temperature at for few minutes, and 10 µmol of 2-Me-pyridine added under vigorous а was stirring. The mixture stirred at room temperature for a few minutes, was and 2 mmol of 2VP added under vigorous stirring. After the measured time was interval, a 0.1 mL aliquot was taken from the reaction mixture via syringe and quickly quenched into a 2- mL vial containing 0.5 mL of undried "wet" CDCl₃ stabilized by 250 ppm of BHT; the quenched aliquots were analyzed by ¹H NMR to obtain the percent monomer conversion data. The polymerization was immediately quenched, after the removal of the aliquot, by addition of 5

mL wet n-hexane. The quenched mixture was precipitated into 100 mL of n-hexane, stirred for 1 h, filtered, washed with n-hexane, and dried in a vacuum oven at 25 °C overnight to a constant weight.

1.2.2 Styrene as Lewis base

In the glove box, a toluene solution (1 mL) of $[Ph_3C][B(C_6F_5)_4]$ (10 mg)10 µmol) was added to a toluene solution (1 mL) of (C₅Me₄SiMe₃)Sc(CH₂SiMe₃)₂(THF) (5 mg, 10 µmol) in а 20-mL flask. The mixture stirred at room temperature was for a few minutes, and a mixture of 2 mmol of styrene and 2 mmol of 2VP was added under vigorous stirring. After the measured time interval, a 0.1 mL aliquot was taken from the reaction mixture via syringe and quickly quenched into a 2- mL vial containing 0.5 mL of undried "wet" CDCl₃ stabilized by 250 ppm of BHT; the quenched aliquots were analyzed by ¹H NMR to obtain the percent monomer conversion data. The polymerization was immediately quenched, after the removal of the aliquot, by addition of 5 mL wet n-hexane. The quenched mixture was precipitated into 100 mL of n-hexane, stirred for 1 h, filtered, washed with n-hexane, and dried in a vacuum oven at 25 °C overnight to a constant weight.

1.3 Polymer characterizations

Polymer number (M_n) and weight (M_w) average molecular weights and polydispersity index (

= M_w/M_n) were measured by gel permeation chromatography (GPC) analyses carried out at 30 °C and a flow rate of 1.0 mL/min with DMF as the eluent, on an Agilent 1260 GPC instrument equipped with four PLgel 5 µm mixed-C columns (Polymer Laboratories; linear range of molecular weight = 200 - 2,000,000). The instrument was calibrated with 10 P(2-VP) standards.

1.4 Wide Angle X-ray Diffraction (WAXD)

Powder X-ray diffraction data were collected on an EMPYREAN diffractometer with Cu KR radiation ($\lambda = 1.54056$ Å) over the 2 θ range of 5 – 40° with a scan speed of 0.3333°/s and a step size of 0.01° at room temperature.

1.5 Differential Scanning Calorimetry (DSC)

DSC was carried out with a NETZSCH DSC 206 thermal analyzer and the samples are analyzed with a heating rate of 10 K/min and a cooling rate of 10 K/min. Due to the slow recrystallization of the melted P2VP, only one heating and cooling cycle was performed.

Therefore, the melting point (T_m) and glass transition temperature (T_g) were taken from the first heat. The middle point of raw data was taken as T_g .

Figure **S1**. ¹H NMR spectrum of a mixture of 10 μ mol of catalyst 1 and 10 μ mol of [Ph₃C][B(C₆F₅)₄] (A); a mixture after adding 100 μ mol of 2VP and removing volatile substance (B).

Figure S2. ¹H NMR spectrum of P2VP oligomer produced by catalyst 1.

Figure **S3**. DSC profile of P2VP produced by catalyst 1 (run 17, Table 1).

Figure S4. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst 1 in toluene at 25 °C in CD₃OD (run 2, Table 1).

Figure S5.The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst **1** in toluene at 25 °C in CD₃OD (run 9, Table 1).

Figure S6. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst **1** in toluene at 25 °C in CD₃OD (run 11, Table 1).

Figure S7. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst 1 in toluene at 25 °C in CD₃OD (run 12, Table 1).

Figure S8. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst 1 in toluene at 25 °C in CD₃OD (run 13, Table 1).

Figure S9. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst **1** in toluene at 25 °C in CD₃OD (run 14, Table 1).

Figure S10. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst 1 in toluene at 25 °C in CD₃OD (run 15, Table 1).

Figure S11. The ¹³C NMR spectrum of P2VP obtained from 2VP by using catalyst **1** in toluene at 25 °C in CD₃OD (run 18, Table 1).

REFERENCES

[1] Luo, Y.; Baldamus, J.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 13910-13911.