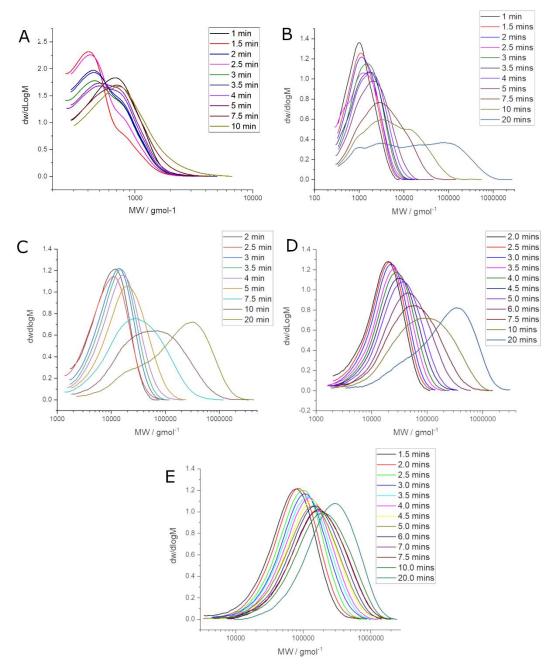
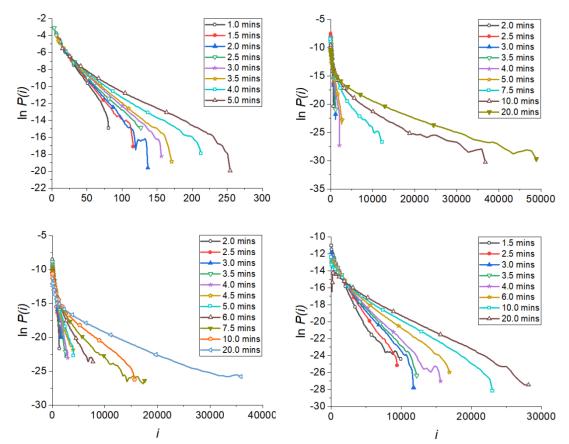
Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) FOR:

When Mayo falls Short ($C_{tr} >> 1$): The use of Cumulative Chain Length Distribution Data in the Determination of Chain Transfer Constants (C_{tr}) for Radical Polymerizations.


Matt K. Donald,^a and Stefan A. F. Bon.*^a

^a. Department of Chemistry, The University of Warwick, CV4 7AL, United Kingdom. E-mail: S.Bon@warwick.ac.uk Web: www.bonlab.info


CONTENT OF ESI:

- S1. Molecular weight distributions as obtained from SEC analysis, dw(logM), obtained for the free radical polymerization of vinyl acetate at 333.15 K in presence of various amounts of *n*-dodecanethiol as chain transfer agent.
- S2. Natural logarithmic versions of the chain length distributions, P(i) at various stages of monomer conversion, obtained for the free radical polymerization of vinyl acetate at 333.15 K in presence of various amounts of *n*-dodecanethiol as chain transfer agent.
- S3. Example GC chromatogram showing the elution behaviour of the reactants.
- S4. GC calibration Equation, data and fit.
- S5. dw/d logM distribution of the poly(vinyl acetate) sample used for triple detection analysis and the determined intrinsic viscosity $[\eta]$ as a function of MW with the fitted K and α values.

S1. Molecular weight distributions

Figure S1: Molecular weight distributions, dwdlogM as a function of molecular weight (gmol⁻¹), were A, B, C, D and E correspond to $[DDT]_{p=0}/[VA]_{p=0} = 1 \times 10^{-2}$, 1×10^{-3} , 1×10^{-4} , 5×10^{-5} and 1×10^{-5} respectively.

Figure S2: In P(i) distributions at increasing polymerisation times where $[DDT]_{p=0}/[VA]_{p=0} = 1 \times 10^{-3}$ (top left), 1×10^{-4} (top right), 5×10^{-5} (bottom left) and 1×10^{-5} (bottom right) respectively.

S3. Example GC chromatogram

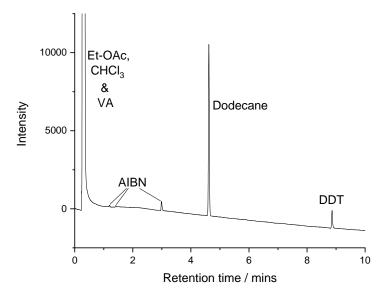
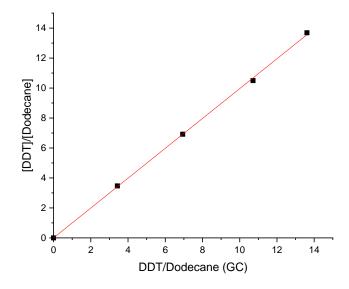
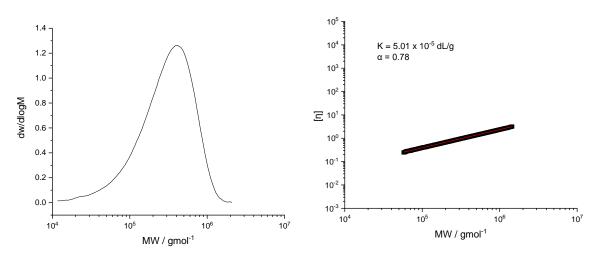



Figure S3: Example GC chromatogram showing the elution behaviour of the reactants.


S4. GC calibration Equation, data and fit

$$y = bx + c$$

Where b = 1.0032 and c = 2.066×10^{-3}

Figure S4: Calibration plot showing the relationship between the [DDT]/[Dodecane] ratio and the ratio of the signals recorded in the GC chromatogram.

Figure S5: dw/d logM distribution of the poly(vinyl acetate) sample used for triple detection analysis (left) and the determined intrinsic viscosity [η] as a function of MW with the fitted K and α values.