Supporting Information

Preparation of Aryl Polysulfonates via a highly efficient SuFEx click reaction, their controllable degradation and functionalized behavior

Zhenlei Cao^a , Feng Zhou^a , Pei-Yang Gu^a , Dongyun Chen^a , Jinghui He^a , John Ra Cappiello^b , Peng Wu^c , Qingfeng Xu^{*a}, and Jianmei Lu^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, No. 199, Ren'ai Road, Suzhou 215123, China

^bDepartment of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States

^cDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States

Table of Contents

Experimental
Materiels
Characterization
Synthesis of Monomers
The preparation of aryl bis(fluorosulfates)
The preparation of Small molecules
The preparation of catalyst $[(Ph_3P=N-PPh_3)^+ HF_2^-] (0.2 \text{ M}) \dots 8$
Synthesis of polymers
Synthesis of polysulfonates9
Synthesis of polysulfates11
Table S1: The reaction conditions and GPC results of Polysulfates
Table S2:Degradation behavior of PSFO1 in different organic bases or solvent
Table S3:Degradation behavior of PSFO1 in different amounts of catalys13
Figure S1:Plot of the molecular weight (Mn ps) of PSFA1 and PSFO1 vs reaction time at 100°C14
Figure S2: LC-MS analysis of the reaction14
Figure S3: ¹ HNMR spectra of PSFO2-TPE
Table S3: The molecular weight (Mn ps) of PSFO1 use 3 catalysts vs reaction time at 100°C15
Figure S4: Plot of the molecular weight (Mn ps) of PSFO1 use 3 catalysts vs reaction time at
100°C16
Figure S5. IR spectra of PSFO2 and PSFO2-OTBS; TPE-OTBS
Figure S6: MALDI-TOF mass spectrum of the polymer PSFO1 treated with DBU17
Figure S7: FTIR spectra of polymer PSFO1 treating by DBU17

Preparation of PSFO1-OCH ₃	17
Preparation of PSFO2-TPE	18
Preparation of PSFO1-TPP-CF ₃	18
Copies of the NMR spectra	19
Thermal gravimetric analysis (TGA) of Polysulfonates and polysulfates	41
IR Spectroscopic Analysis	45
GPC Results	46

Experimental

Materiels

All the materials General Methods. All starting materials were purchased from Aldrich, Acros, AKScientific, Fisher, Lancaster, VWR, or TCI chemical companies and used as received. Solvents were purchased from Fisher or VWR and used without extra drying, distillation or special handling practices.

Characterization

¹H NMR and ¹³C NMR ¹⁹F NMR spectra were recorded using INOVA 400 or 600 MHz NMR spectrometers, with CDCl₃ or DMSO-d₆ or DMF-d₇ as the solvent and tetramethylsilane (TMS) as the internal standard at ambient temperature. The molecular weights and polydispersity index (PDI), relative to PS, were measured using a Waters 1515 GPC with THF/DMF as a mobile phase at a flow rate of 1 mL min⁻¹ and with a column temperature of 30 °C. UV-visible absorption spectra were recorded on a Shimadzu RF540 spectrophotometer. Room temperature emission Edinburgh-920 spectra were recorded using an fluorescence spectrophotometer. Thermogravimetric analysis (TGA) was performed on a TA Instruments Dynamic TGA 2950 at a heating rate of 10 °C min⁻¹ under an N₂ flow rate of 50 mL min⁻¹. Differential scanning calorimetry (DSC) analysis was performed on a Shimadzu DSC 860A 85 instrument at a heating rate of 10°C /min under N2. Percoated Merck F-254 silica gel plates were used for thin layer analytical chromography (TLC) and visualized with short wave UV light or by potassium permanganate stain. gas. Matrix-assisted laser desorptionionization-time-of-flight (MALDI-TOF) MS spectra were obtained using a ABI 4700 MALDI TOF/TOF. Spectra of sequence polymers were recorded in linear mode (polarity: positive). trans-2-[3-(4-tert-Butylphenyl)-2methylpropenylidene]-malononitrile (DCTB, 20 mg/mL in THF) was used as the matrix and CF₃COONa (1 mg/mL in THF) as the cation source for all the polymers. 20 μ L of polymer solution (1 mg/mL in THF), 20 μ L of DCTB solution, and 2 μ L of CF₃COONa solution were mixed in an Eppendorf tube, vortexed, and centrifuged. 1 μ L of solution was placed on the target plate spot, the solvent evaporated at ambient condition for the measurement.

Synthesis of Monomers

The preparation of aromatic bis(sulfonyl fluoride).

General procedure for the preparation of aromatic bis(sulfonyl fluoride).S1 was adapted as an example.

(1) Biphenyl-4,4'-disulfonyl difluoride (S1)

Biphenyl-4,4'-disulfonylchloride (5.0 g) was dissolved in 40 mL acetonitrile and 5 mL water with stirring. To this mixture was added 4 equiv. of saturated aqueous KHF₂ (4.9 g). The reaction was allowed to proceed 3 h. The mixture was extracted twice with 30 mL ethyl acetate. The organic fractions were combined, washed with water, brine, and then dried over MgSO₄. Solvent was removed under vacuum to provide as a yellow solid (4.1 g, 90%); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, *J* = 8.1 Hz, 4H), 7.94 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 145.74, 133.45, 133.29, 129.32, 128.71. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ 66.32.

(2) naphthalene-2,7-disulfonyl difluoride(S2)

Naphthalene-2,7-disulfonate (1.0 g, 3.54 mmol) was added to phosphorus pentachloride (0.835 g, 7.08 mmol). The mixture was heated under reflux for 16 hours and then cooled to room

temperature. The solution was quenched with CHCl₃. The organic layer was dried with MgSO₄ and concentrated to give the desired compound. The solvent of the collected organic phase was removed under reduced pressure to give naphthalene-2,7-disulfonyldichloride. The solid residue was recrystallized from CHCl₃ (15 mL). Naphthalene-2,7-disulfonyl dichloride was dissolved in acetonitrile, potassium fluorohydride was dissolved in water, and the two solutions were mixed and stirred at room temperature for 24 hours. After completion of the reaction, the mixture was extracted with EtOAc. The organic fractions were combined, washed with water, brine, and then dried over MgSO4. Solvent was removed under vacuum to provide as a colourless solid. (0.73 g, 73%) ¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (s, 2H), 8.28 (s, 4H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 138.33, 132.77, 132.60, 132.11, 130.52, 126.48. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ 66.30.

(3) Benzene-1,3-disulfonyl fluoride (S3)

To benzene-1,3-disulfonic acid disodium salt (25.0 g, 88.6 mmol) was added PCl₅ (40.0 g, 193 mmol). The solid reaction mixture was then stirred at 90 °C for 16 h, cooled to roomtemperature before the addition of H₂O (200 mL). The crude mixture was extracted with Et₂O (500 mL), washed with H₂O (500 mL) and dried over anhydrous MgSO₄. Removal of the solvent removed under reduced pressure gave the crude product benzene-1,3-disulfonyl dichloride. benzene-1,3-disulfonyl dichloride was dissolved in acetonitrile, potassium fluorohydride was dissolved in water, and the two solutions were mixed and stirred at room temperature for 24 hours. After completion of the reaction, the mixture was extracted with EtOAc. The organic fractions were combined, washed with water, brine, and then dried over MgSO4. Solvent was removed under vacuum to provide as a colourless solid (18.5 g, 76%).¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (s, 1H), 8.43 (dd, *J* = 8.0, 1.9 Hz, 2H), 7.99 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 134.80, 131.62, 128.57. ¹⁹F NMR (564 MHz, Chloroform-*d*) δ 66.70.

(4) 4,4'-oxydibenzenesulfonyl fluoride (S4)

FO₂S

Following the general procedure above for the preparation was isolated as white powder (Yields 87%): ¹H NMR (400 MHz, DMSO- d_6) δ 8.24 (s, 4H), 7.54 (s, 4H). ¹³C NMR (151 MHz, Chloroform-d) δ 161.09, 131.34, 128.76, 128.59, 119.92.

The preparation of aryl bis(fluorosulfates).

General procedure for the preparation of aryl bis(fluorosulfates) The synthesis of O1 was adapted as an example

(1) [1,1'-biphenyl]-4,4'-diyl bis(sulfurofluoridate) (O1)

In a 1.0 L round-bottom flask equipped with a stir bar, [1,1'-biphenyl]-4,4'-diol (37.2 g, 0.2 mol) was dissolved in 400 mL CH₂Cl₂. Triethylamine (50.5 g, 0.5 mol) was added, and the solution was stirred at room temperature for 10 mins. The flask was charged with gentle vacuum, then quickly filled with SO_2F_2 gas via a syringe attached balloon. The reaction mixture was allowed stirring at room temperature for 4 hours. Then CH₂Cl₂ was evaporated away, and the crude product was dissolved in 200 mL EtOAc, which was subsequently washed with 100 mL aqueous HCl (1.0M, 3 times), 50 mL saturated aqueous solution of NaHCO₃, and 50 mL of saturated brine. The organic concentrated subjected flash phase was and to column chromatography purification(Hexane/EtOAc). O1 was isolated as White solid (95% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 7.94 (t, J = 5.9 Hz, 4H), 7.76 (d, J = 8.3 Hz, 4H). ¹³C NMR (151 MHz, Chloroform-d) δ 145.73, 133.37 (d, J = 25.4 Hz), 129.34, 128.70. ¹⁹F NMR (564 MHz, Chloroform-d) δ 66.35.

(2) Naphthalene-2,7-diyl disulfofluoridate (O2) $FO_2SO_{-}OSO_2F$

Naphthalene-2,7-diyl disulfofluoridate O2 was prepared following literature. O2 was isolated as white powder (87%)¹H NMR (400 MHz, DMSO- d_6) δ 8.42 (d, J = 2.5 Hz, 2H), 8.35 (d, J = 9.1 Hz, 2H), 7.89 (dd, J = 9.0, 2.5 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-d) δ 148.67, 133.55, 131.51, 131.05, 120.70, 119.16. ¹⁹F NMR (564 MHz, Chloroform-d) δ 38.40.

(3) 1,3-phenylene bis(sulfurofluoridate)(O3) $FO_2SO_{-}OSO_2F$

O3 was prepared Following the general procedure above for the preparation .White solid(yield 90%)¹H NMR (400 MHz, DMSO- d_6) δ 8.21 (s, 1H), 7.87 (d, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 149.93, 131.93, 121.46, 114.98. ¹⁹F NMR (564 MHz, Chloroform-d) δ 38.60, 38.56 (d, J = 4.0 Hz).

(4) oxybis(4,1-phenylene) bis(sulfurofluoridate) (O4)

4,4'-Oxybis(4,1-phenylene) disulfofluoridate O4 was prepared following the general procedure.O4 was isolated as white crystalline solid (yield 75%) ¹H NMR (400 MHz, DMSO- d_6) δ 7.67 (d, J = 8.7 Hz, 4H), 7.27 (d, J = 8.8 Hz, 4H). ¹³C NMR (151 MHz, Chloroform-d) δ 156.25, 145.65, 122.69, 120.39. ¹⁹F NMR (564 MHz, Chloroform-d) δ 37.13, 37.09.

The preparation of monomers

(4,4'-(Propane-2,2-diyl)bis(4,1-phenylene))bis(oxy)bis(tert-butyldimethylsilane) (1a)

In a 500 mL round-bottom flask equipped with a stir bar, bisphenol-A (20 mmol) and imidazole(52 mmol) were combined and dissolved in 100 mL of chloromethane (CH_2Cl_2). The solution was stirred at room temperature for 10 mins, then was added 20 mL CH_2C_{12} solution of TBSCI (48mmol) dropwise within 20 mins. The resulting mixture was stirred at room temperature until the full conversion of starting compound to target product, monitored by TLC and LC-MS. Precipitates were removed by filtration. The filtrate was concentrated on rotary evaporator. The resulting crude product was dissolved in 100 mL of ethyl acetate (EtOAc), which was subsequently washed with 50 mL saturated aqueous solution of NaHCO₃ (3 times) and 50 mL saturated aqueous solution of NaHCO₃ (3 times) Na₂SO₄. After filtration, the filtrate was subjected to evaporation to remove EtOAc. The crude product through flash column chromatography purification(Hexane/EtOAc) as white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.06 (d, *J* = 8.6 Hz, 4H), 6.71 (d, *J* = 8.6 Hz, 4H), 1.62 (s, 6H), 0.97 (s, 18H), 0.19 (s, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 153.20, 143.63, 127.62, 119.12, 41.69, 31.05, 25.65, 18.13, -4.43.

6-(3,5-bis(4-((tert-butyldimethylsilyl)oxy)phenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-butyl-1Hbenzo[de]isoquinoline-1,3(2H)-dione (1b)

6-(3,5-bis(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-butyl-1H-benzo[de]isoquinoline-

1,3(2H)-dione (1.012g, 2mmol)and imidazole (0.354g, 5.2mmol) were dissolved in dichloromethane (40 mL). And then the solution of tert-butyldimethylsilyl chloride (0.97 g, 4.8 mmol) in the dichloromethane (4 mL) was dropwise added into the reaction mixture. The reaction mixture was allowed to stir at room temperature for 24 hrs. After the reaction was completed, the mixture was extracted with ethyl acetate and washed successively with sodium bicarbonate solution and water. The solution was removed by rotary evaporation in vacuum. And the product was purified by silica-gel column chromatography to give a pale yellow powder with a yield of 75%.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.68 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 6.9 Hz, 1H), 8.29 (d, *J* = 8.2 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 3H), 7.18 (s, 2H), 6.92 (d, *J* = 7.8 Hz, 2H), 6.76 (d, *J* = 6.9 Hz, 3H), 5.59 (d, *J* = 7.7 Hz, 1H), 4.15 (s, 2H), 3.90 – 3.78 (m, 1H), 3.21 (s, 1H), 2.18 (s, 2H), 1.43 (s, 2H), 1.01 (s, 10H), 0.94 (s, 11H), 0.25 (s, 6H), 0.15 (s, 6H).

(((perfluoropropane-2,2-diyl)bis(4,1-phenylene))bis(oxy))bis(tert-butyldimethylsilane) (1c)

1C was prepared following literature¹, compound was afforded as white solid in 91% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.5 Hz, 4H), 6.85 – 6.74 (m, 4H), 0.99 (s, 18H), 0.23 (s, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.97, 131.40, 126.01, 119.37, 25.57, 18.13, -4.43

The preparation of Small molecules

tert-butyl(4-methoxyphenoxy)dimethylsilane(TBMP-OTBS)was prepared following procedure above.

¹H NMR (400 MHz, DMSO-*d*₆) δ 6.77 (q, *J* = 8.7 Hz, 4H), 3.68 (s, 3H), 0.93 (s, 9H), 0.14 (s, 6H).¹³C NMR (151 MHz, Chloroform-*d*) δ 154.06, 149.32, 120.58, 114.44, 55.59, 25.70, 18.16, -4.52.

TPE-OTBS was prepared following was prepared following procedure above. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.12 – 7.03 (m, 9H), 6.96 – 6.89 (m, 6H), 6.82 – 6.77 (m, 2H), 6.59 – 6.55 (m, 2H), 0.87 (s, 9H), 0.09 (s, 6H).

The preparation of catalyst [(Ph₃P=N-PPh₃)⁺ HF₂⁻] (0.2 M)

 $[(Ph_3P=N-PPh_3)^+ HF_2^-]$ was prepared following literature¹. To a well stirred solution (suspension) of AgHF₂ (10 mmol) in CH₃CN (45 mL) in a 100 mL plastic bottle (the bottle was covered by aluminum foil to avoid light) with a rubber septa was added a solution of $[(Ph_3P=N-PPh_3)^+ Cl^-]$ (10 mmol) in CH₃CN (5 mL) in 5 min by syringe under argon atmosphere. The mixture was allowed to stir at room temperature for 30 min, and then sonicated at room temperature for another 30 min.

It was then centrifuged (2000 rpm), and the supernatant was transferred under argon by syringe into a plastic bottle as a 0.2 M stock catalyst solution (microwave oven activated molecular sieves was preloaded to keep the solution dry).

Synthesis of polymers

Synthesis of polysulfonates

General procedure for the preparation of polysulfonates

The synthesis of poly-bisphenol-A-(2,2'-(phenylazanediyl)bis(ethane-1-sulfonate) **PSFO3** was adapted as an example

To an oven dried test tube with stir bar was added 2,2'-(phenylazanediyl)bis(ethane-1-sulfonyl fluoride) (0.5 mmol) and bisphenol A bis(t-butyldimethylsilyl) ether (0.5 mmol). The tube was purged three times with argon and then charged with DMF (0.1 mL) andThe mixture was heated to 80 °C with stirring for 10 minutes under argon atmosphere, and then an additional (Ph₃P=N-PPh₃)⁺HF₂ ⁻ (0.2 M in acetonitrile, 65 μ L, 1.25 mol%) or 20% DBU was added to the reaction solution. The solution was added slowly by pipette into a flask containing methanol (50 mL) with vigorously stirring to precipitate the desired polysulfonate PSFO3. The precipitate was then isolated by filtration, washed with MeOH (20 mL), and dried under high vacuum pimp at 60 °C to provide 247 mg white solid. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.33 – 8.15 (m, 2H), 7.93 (t, *J* = 7.9 Hz, 1H), 7.77 (s, 1H), 7.06 (d, *J* = 8.7 Hz, 4H), 6.84 (d, *J* = 8.7 Hz, 4H), 1.42 (s, 6H).

PSFO1

Prepared following the general procedure ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.03 – 7.84 (m, 8H), 7.13 (s, 4H), 6.94 (s, 4H), 1.51 (s, 6H).

PSFO2

Prepared following the general procedure ¹H NMR (600 MHz, DMSO- d_6) δ 8.94 – 8.80 (m, 2H), 8.40 – 8.25 (m, 2H), 8.13 – 8.01 (m, 2H), 7.11 – 6.99 (m, 4H), 7.00 – 6.82 (m, 4H), 1.44 (dt, J = 14.8, 4.6 Hz, 6H).

PSFO4

Prepared following the general procedure ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.86 (d, *J* = 8.4 Hz, 4H), 7.38 (dd, *J* = 113.5, 8.3 Hz, 4H), 7.12 (dd, *J* = 30.3, 8.6 Hz, 4H), 6.97 (dd, *J* = 61.6, 8.5 Hz, 4H), 1.53 (s, 6H).

PSFO1-TPP

PSFO₁-TPP

Prepared following the general procedure ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.62 – 9.15 (m, 1H), 8.34 – 7.98 (m, 3H), 7.94 – 7.65 (m, 8H), 7.57 (t, *J* = 10.4 Hz, 3H), 7.46 – 7.25 (m, 2H), 7.13 (s, 2H), 6.97 (s, 2H), 5.88 (s, 1H), 3.85 (s, 3H), 3.27 – 3.03 (m, 1H), 1.43 (s, 2H), 1.20 (d, *J* = 19.0 Hz, 3H), 0.96 – 0.55 (m, 4H).

Synthesis of polysulfates

General procedure for the preparation of polysulfates

The synthesis of Poly-bisphenol-A-(2,2'-(phenylazanediyl)bis(ethane-1-sulfonate) PSFA3 was adapted as an example

To an oven dried test tube with stir bar was added 2,2'-(phenylazanediyl)bis(ethane-1-sulfonyl fluoride) (0.5 mmol) and bisphenol A bis(t-butyldimethylsilyl) ether (0.5 mmol). The tube was purged three times with argon and then charged with DMF (0.1 mL) The mixture was heated to 80°C with stirring for 10 minutes under argon atmosphere, and then an additional (Ph₃P=N-PPh₃)⁺HF₂ - (0.2 M in acetonitrile, 65 μ L, 1.25 mol%) was added to the reaction solution. The solution was added slowly by pipette into a flask containing methanol (50 mL) with vigorously stirring to precipitate the desired polysulfonate PSFA3. The precipitate was then isolated by filtration, washed with MeOH (20 mL), and dried under high vacuum pimp at 60°C to provide 247 mg white solid.

PSFA1 prepared following the procedure ¹H NMR (600 MHz, DMSO- d_6) δ 7.93 – 7.72 (m, 4H), 7.48 (d, J = 7.9 Hz, 4H), 7.34 (s, 8H), 1.62 (s, 6H).

PSFA2 prepared following the procedure ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.18 (d, *J* = 38.6 Hz, 4H), 7.58 (s, 2H), 7.35 (d, *J* = 30.2 Hz, 8H), 1.59 (s, 6H).

PSFA4 prepared following the procedure ¹H NMR (600 MHz, DMSO- d_6) δ 7.43 (s, 4H), 7.32 (s,

8H), 7.13 (d, *J* = 8.9 Hz, 4H), 1.61 (s, 6H).

PSFA4

PSFA1-TPP prepared following the procedure

	Dolygulfatos	т	(C1	C2	2	Та
	Polysunates	1	Mn	PDI	Mn	PDI	Iu
DCE A 1	$\left[0_{2}SO^{(1)}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	RT	23800	1.5	17600	1.5	-
PSFAI		373K	38600	1.5	33700	1.5	336
PSFA2	$\begin{bmatrix} 0_2 SO & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	373K	21900	1.3	25000	1.5	353
PSFA3		373K	17100	1.4	20800	1.4	353
PSFA4		373K	46300	1.5	56000	1.5	339

Table S1: The reaction conditions and GPC results of Polysulfates

Table S2:Degradation behavior of PSFO1 in different organic bases or solvent

		Base soluti	on		Solver	nt (DBU)		
	Na_2CO_3	ТМА	Ру	DMAP		THF	CH_2CI_2	DMF
before	73600(1.5)	73900(1.5)	73900(1.5)	73900(1.5)	before	35600(1.6)	35600(1.6)	35600(1.6)
after	72000(1.6)	71100(1.7)	69800(1.7)	61400(1.8)	after	13400(1.3)	10600(1.2)	9000(1.2)

Table S3:Degradation behavior of PSFO1 in different amounts of catalyst

	5%		20%	30%
before	35600(1.6)	35600(1.6)	35600(1.6)	35600(1.6)
after	11300(1.1)	10100(1.1)	10800(1.1)	10100(1.1)

Figure S1:Plot of the molecular weight (Mn ps) of PSFA1 and PSFO1 vs reaction time at

100°C

Figure S2: LC-MS analysis of the reaction

Figure S3: ¹HNMR spectra of PSFO2-TPE

Table S3: The molecula	• weight (Mn ps) of PSFO1	use 3 catalysts vs reaction	time at 100°C
------------------------	---------------------------	-----------------------------	---------------

Catalysts	TBD	MTBD	ТМG
5min	29759	51559	52066
15min	25961	48451	50193
30min	24766	44350	51007
45min	22387	42315	51218
65min	20244	35154	47853
85min	18563	29375	43885
105min	18165	27140	43452
125min	18187	26805	42771

Figure S6: MALDI-TOF mass spectrum of the polymer PSFO1 treated with DBU.

End-Group Analysis by MALDI-TOF MS. We conduct the end-group analysis using formula : $P_m = E_m + C_m + nRU_m$. where E_m represents the end group mass, P_m is the chosen polymer peak mass, C_m is the cation ion mass, *n* is the RU number, and RU_m represents the mass of the RU. In Positive mode,-SO₃H was calculated as -SO₃Na², Thus, $P_m = E_m + C_m + nRU_m = 1+19+23+4X$ 506=2067, which is composed of -SO₃H and -OH end groups. The peak mass of 2067.390 Da in Figure was in good agreement with the expected molecular weight.

Figure S7: FTIR spectra of polymer PSFO1 treating by DBU.

Preparation of PSFO1-OCH₃

The prepared PSFO1 polymer(200mg) was placed in a 5 ml round bottom flask equipped with a magnetic stirrer, and DMF (1ml)was added, and heat to completely dissolve it. Then, DBU and tert-butyl(4-methoxyphenoxy)dimethylsilane(200mg) were separately added and then heated to 100 °C for 6 hours. The entire reaction is carried out in a constant stream of N₂. After the end of the reaction, the reactor was naturally cooled to room temperature, which was precipitated into MeOH to precipitate a polymer. The obtained solution was centrifuged at 8000 rpm for 10 minutes twice to wash away impurities. The precipitate was filtered and washed three times with MeOH, suction filtered, and then dried in vacuo in an oven at 60 ° C for 6 hours. The solid was obtained from the solution by freeze drying and vacuum-baked in an oven at 60 ° C for 6 hours. A white solid was obtained. (Yield: about 25%).

Preparation of PSFO2-TPE

The prepared PSFO2 polymer(200mg) was placed in a 5 ml round bottom flask equipped with a

magnetic stirrer, and DMF (2ml)was added,and heat to completely dissolve it. Then, DBU(20%)and TPE-OTBS(200mg) were separately added and then heated to 100 °C for 6 hours. The entire reaction is carried out in a constant stream of N2 . After the end of the reaction, the reactor was naturally cooled to room temperature, which was precipitated into MeOH to precipitate a polymer. The obtained solution was centrifuged at 8000 rpm for 10 minutes twice to wash away impurities. The precipitate was filtered and washed three times with MeOH, suction filtered, and then dried in vacuo in an oven at 60 °C for 6 hours. The blocked product was obtained. After the reaction is completed, it is then dialyzed in a dialysis bag to remove small molecules. The solid was obtained from the solution by freeze drying and vacuum-baked in an oven at 60 °C for 6 hours. A white solid was obtained. (Yield: about 20%).

Preparation of PSFO1-TPP-CF3

The prepared PSFO1-TPP polymer(50mg) was placed in a 5 ml round bottom flask equipped with a magnetic stirrer, and DMF (1ml)was added, and heat to completely dissolve it. Then, DBU (20%)and MTPP-OTBS(80mg) were separately added and then heated to 100 °C for 6 hours. The entire reaction is carried out in a constant stream of N_2 . After the end of the reaction, the reactor was naturally cooled to room temperature, which was precipitated into MeOH to precipitate a polymer. The obtained solution was centrifuged at 8000 rpm for 10 minutes twice to wash away impurities. The precipitate was filtered and washed three times with MeOH, suction filtered, and then dried in vacuo in an oven at 60 °C for 6 hours. The blocked product was obtained. After the reaction is completed, it is then dialyzed in a dialysis bag to remove small molecules. The solid was obtained from the solution by freeze drying and vacuum-baked in an oven at 60 ° C for 6 hours. A white solid was obtained. (Yield: about 18%).

Copies of the NMR spectra

¹H NMR (S-1)

¹⁹F NMR (S-1)

¹³C NMR (S-2)

¹H NMR (S-3)

138.33 132.77 132.60 132.61 132.11 130.52 126.48

FO2S SO2F

¹⁹F NMR (S-3)

¹H NMR (S-4)

¹H NMR (O-1)

¹⁹F NMR (O-1)

-66.35

¹H NMR (O-3)

¹⁹F NMR (O-3)

-38.60

30

¹H NMR (1a)

¹H NMR (1b)

¹³C NMR(TBMP-OTBS)

¹H NMR (PSFO1)

¹H NMR (PSFO1-TPP-CF₃)

Thermal gravimetric analysis (TGA) of Polysulfonates and polysulfates

Thermal gravimetric analysis (TGA) of PSFO1

Thermal gravimetric analysis (TGA) of PSFO2

Thermal gravimetric analysis (TGA) of PSFO3

Thermal gravimetric analysis (TGA) of PSFO4

Thermal gravimetric analysis (TGA) of PSFA1

Thermal gravimetric analysis (TGA) of PSFA3

IR Spectroscopic Analysis

The IR spectra of (a)PSFA1, (b)PSFA2, (c)PSFA3, (d) PSFA4, (e)PSFO1, (f) PSFO2, (g)PSFO3, (h)PSFO4

GPC Results

GPC trace of the PSFO1.											
Catalyst	Sample	RT	Мр	Mar	МР	M-	Poly disporsity				
	Name	(min)	Mn	IVI VV	IVIF	IVIZ	Poly-dispersity				
C1	PSFO1	24.250	73659	105266	141924	139951	1.429				
C2	PSFO1	31.597	13415	17730	15970	23037	1.322				

GPC trace of the PSFO2.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C 1	PSFO2	27.081	31920	47095	49739	65284	1.475
C2	PSFO2	28.289	23867	36447	38932	50939	1.527

GPC trace of the PSFO3.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C 1	PSFO3	29.025	20737	30536	30989	43374	1.472
C2	PSFO3	31.700	12764	16430	15433	20729	1.287

GPC trace of the PSFO4.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C1	PSFO3	25.094	49333	74861	77864	105185	1.517
C2	PSFO3	30.217	17070	21540	20616	27332	1.262

GPC trace of the PSFA1.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C 1	PSFA1	26.098	38640	61583	66936	89082	1.594
C2	PSFA1	27.046	33738	54162	57977	78818	1.605

GPC trace of the PSFA2.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C 1	PSFA2	28.036	21915	29542	30906	38401	1.348
C 2	PSFA2	28.242	25021	37506	39489	52835	1.499

GPC trace of the PSFA3.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C 1	PSFA3	30.016	17151	24044	24070	32315	1.402
C 2	PSFA3	29.105	20859	29644	29770	39855	1.421

48

GPC trace of the PSFA4.

Catalyst	Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
C 1	PSFA3	25.941	46290	46290	73356	94528	1.494
C2	PSFA3	25.569	55821	81315	82461	110280	1.457

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
	24.250	73659	105266	141924	139951	1.429

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
	24.016	71160	121311	161817	173892	1.705

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
	24.005	69845	121006	162591	174301	1.732

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
	24.053	61418	111630	111630	165090	1.818

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
	24.083	72065	112253	153025	157467	1.558

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
PSFO1	26.248	35677	59257	64181	84908	1.661

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
5%	32.929	11326	12731	11885	14146	1.124

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
10%	33.431	10184	11195	10762	12177	1.099

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
20%	33.244	10889	12145	11173	13369	1.115

Sample Name	RT (min)	Mn	Mw	MP	Mz	Poly-dispersity
30%	33.697	10137	11115	10186	12047	1.097

References

1. Wang, H.; Zhou, F.; Ren, G.; Zheng, Q.; Chen, H.; Gao, B.; Klivansky, L.; Liu, Y.;

52

Wu, B.; Xu, Q.; Lu, J.; Sharpless, K. B.; Wu, P., SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts. *Angewandte Chemie-International Edition* **2017**, *56* (37), 11203-11208.

2. Feng, L.; Cavicchi, K. A.; Katzenmeyer, B. C.; Wesdemiotis, C., Synthesis of ω-sulfonated polystyrene via reversible addition fragmentation chain transfer polymerization and postpolymerization modification. *Journal of Polymer Science Part A: Polymer Chemistry* **2011**, *49* (23), 5100-5108.