Supporting Information

Polymerization of epoxide monomers promoted by $tBuP_4$ phosphazene base: A comparative study of kinetic behavior.

Valentin Puchelle¹, Haiqin Du¹, Nicolas Illy^{1*}, and Philippe Guégan^{1*}

¹Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des

Polymères, 4 place Jussieu, 75005 Paris, France.

Figure S1. ¹H NMR spectrum in $CDCl_3$ of the reaction mixture of PO polymerization initiated by benzyl alcohol-*t*BuP₄ at 25°C in THF (Table 2, run 1) after 3 hours and the equation use to determine the monomer conversion.

Figure S2. ¹H NMR spectrum in $CDCI_3$ of the reaction mixture of BO polymerization initiated by benzyl alcohol-*t*BuP₄ at 25°C in THF (Table 2, run 2) after 6 hours and the equation use to determine the monomer conversion.

Figure S3. ¹H NMR spectrum in CDCl₃ of the reaction mixture of *t*BuGE polymerization initiated by benzyl alcohol-*t*BuP₄ at 25°C in THF (Table 2, run 3) after 9 hours and the equation use to determine the monomer conversion.

Figure S4. ¹H NMR spectrum in $CDCl_3$ of the reaction mixture of AGE polymerization initiated by benzyl alcohol-*t*BuP₄ at 25°C in THF (Table 2, run 4) after 2 hours and the equation use to determine the monomer conversion.

$$p = 1 - \frac{l_{C_{M2}}}{\left(l_f + l_{f_M}\right)} = 1 - \frac{1}{2.37} = 0.58$$

Figure S5. ¹H NMR spectrum in $CDCl_3$ of the reaction mixture of EEGE polymerization initiated by benzyl alcohol-*t*BuP₄ at 25°C in THF (Table 2, run 5) after 1.5 hours and the equation use to determine the monomer conversion.

Figure S6. ¹H NMR spectrum in CDCl₃ of the reaction mixture of BnGE polymerization initiated by benzyl alcohol-*t*BuP₄ at 25°C in THF (Table 2, run 6) after 6 hours and the equation use to determine the monomer conversion.

Figure S7. ¹H NMR spectrum in CDCl₃ of polyPO polymerization initiated by benzyl alcohol- $tBuP_4$ (Table 2, run 1) and the equation use to determine its number-average molar mass.

Figure S8. ¹H NMR spectrum in CDCl₃ of polyBO polymerization initiated by benzyl alcohol- $tBuP_4$ (Table 2, run 2) and the equation use to determine its number-average molar mass.

Figure S9. ¹H NMR spectrum in $CDCl_3$ of polytBuGE polymerization initiated by benzyl alcohol-*t*BuP₄ (Table 2, run 3) and the equation use to determine its number-average molar mass.

Figure S10. ¹H NMR spectrum in CDCl₃ of polyAGE polymerization initiated by benzyl alcohol- $tBuP_4$ (Table 2, run 4) and the equation use to determine its number-average molar mass.

Figure S11. ¹H NMR spectrum in $CDCl_3$ of polyEEGE polymerization initiated by benzyl alcohol- $tBuP_4$ (Table 2, run 5) and the equation use to determine its number-average molar mass.

Figure S12. AROP of PO initiated by benzyl alcohol-*t*BuP₄ in THF at 25°C ($[M]_0 = 2 \text{ M}$; $[I]_0 = 4 \times 10^{-2} \text{ mol.L}^{-1}$): (a) First order plot ($k_{p, app}$ (black) = 5.38 x 10⁻² L.mol⁻¹.min⁻¹; $k_{p, app}$ (blue) = 5.38 x 10⁻² L.mol⁻¹.min⁻¹; average value $k_{p, app} = 5.38 \times 10^{-2} \text{ L.mol}^{-1}$.min⁻¹); relationship observed between number-average molar mass (full squares; linear trend curve is indicated by the dashed line) or dispersity (empty squares) and monomer conversion.

Figure S13. AROP of BO initiated by benzyl alcohol-*t*BuP₄ in THF at 25°C ($[M]_0 = 2 M$; $[I]_0 = 4 \times 10^{-2} mol.L^{-1}$): (a) First order plot (slope of the linear regression = 0.0018 min⁻¹, R² = 0.994; k_{p, app} = 4.51 x 10⁻² L.mol⁻¹.min⁻¹); relationship observed between number-average molar mass (full squares; linear trend curve is indicated by the dashed line) or dispersity (empty squares) and monomer conversion.

Figure S14. AROP of *t*BuGE initiated by benzyl alcohol-*t*BuP₄ in THF at 25°C ($[M]_0 = 2 \text{ mol.L}^{-1}$; $[I]_0 = 4 \text{ x}$ 10⁻² mol.L⁻¹): (a) First order plot ($k_{p, app}$ (black) = 5.35 x 10⁻² L.mol⁻¹.min⁻¹; $k_{p, app}$ (blue) = 5.52 x 10⁻² L.mol⁻¹.min⁻¹; average value $k_{p, app} = 5.43 \text{ x} 10^{-2} \text{ L.mol}^{-1}.min^{-1}$); relationship observed between numberaverage molar mass (full squares; linear trend curve is indicated by the dashed line) or dispersity (empty squares) and monomer conversion.

Figure S15. AROP of EEGE initiated by benzyl alcohol-*t*BuP₄ in THF at 25°C ([M]₀ = 2 mol.L⁻¹; [I]₀ = 4 x 10^{-2} mol.L⁻¹): (a) First order plot ($k_{p, app}$ (black) = 2.28 x 10^{-1} L.mol⁻¹.min⁻¹; $k_{p, app}$ (blue) = 2.19 x 10^{-1} L.mol⁻¹.min⁻¹; average value $k_{p, app}$ = 2.23 x 10^{-1} L.mol⁻¹.min⁻¹); relationship observed between number-average molar mass (full squares; linear trend curve is indicated by the dashed line) or dispersity (empty squares) and monomer conversion.

(b)

Figure S16. AROP of AGE initiated by benzyl alcohol-*t*BuP₄ in THF at 25°C ($[M]_0 = 2 \text{ mol.L}^{-1}$; $[I]_0 = 4 \text{ x}$ 10⁻² mol.L⁻¹): (a) First order plot ($k_{p, app}$ (black) = 3.00 x 10⁻¹ L.mol⁻¹.min⁻¹; $k_{p, app}$ (blue) = 3.00 x 10⁻¹ L.mol⁻¹.min⁻¹; average value $k_{p, app} = 3.00 \text{ x} 10^{-1} \text{ L.mol}^{-1}$.min⁻¹); relationship observed between number-average molar mass (full squares; linear trend curve is indicated by the dashed line) or dispersity (empty squares) and monomer conversion.

Figure S17. AROP of BnGE initiated by benzyl alcohol-*t*BuP₄ in THF at 25°C ($[M]_0 = 2 \text{ mol.L}^{-1}$; $[I]_0 = 4 \times 10^{-2} \text{ mol.L}^{-1}$): (a) First order plot ($k_{p, app}$ (black) = 3.95 x 10⁻¹ L.mol⁻¹.min⁻¹; $k_{p, app}$ (blue) = 4.30 x 10⁻¹ L.mol⁻¹.min⁻¹; average value $k_{p, app} = 4.12 \times 10^{-1} \text{ L.mol}^{-1}.min^{-1}$); relationship observed between number-average molar mass (full squares; linear trend curve is indicated by the dashed line) or dispersity (empty squares) and monomer conversion.

(b)

Figure S18. SEC traces of the poly(BO) classical AROP without *i*-Bu₃Al (solid line), monomer-activated AROP with *i*-Bu₃Al (dashed line), detected by RI detector (eluent: THF; 40°C; flow rate: 1 ml.min⁻¹)

Figure S19. Monomer conversion and $ln([M]_0/[M])$ vs time for the AROP of PO initiated by benzyl alcohol-*t*BuP₄ in the presence of *i*Bu₃Al in MeTHF at 25°C ([M]₀ = 2 mol.L⁻¹; [I]₀ = 3.7 x 10⁻² mol.L⁻¹, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S20. Monomer conversion and $ln([M]_0/[M])$ vs time for the AROP of BO initiated by benzyl alcohol-*t*BuP₄ in the presence of *i*Bu₃Al in MeTHF at 25°C ([M]₀ = 2 mol.L⁻¹; [I]₀ = 3.7 x 10⁻² mol.L⁻¹, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S21. Monomer conversion and $ln([M]_0/[M])$ vs time for the AROP of AGE initiated by benzyl alcohol-*t*BuP₄ in the presence of *i*Bu₃Al in MeTHF at 25°C ($[M]_0 = 2 \text{ mol.L}^{-1}$; $[I]_0 = 3.7 \times 10^{-2} \text{ mol.L}^{-1}$, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S22. Monomer conversion and $ln([M]_0/[M])$ vs time for the AROP of EEGE initiated by benzyl alcohol-*t*BuP₄ in the presence of *i*Bu₃Al in MeTHF at 25°C ([M]₀ = 2 mol.L⁻¹; [I]₀ = 3.7 x 10⁻² mol.L⁻¹, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S23. Monomer conversion and $ln([M]_0/[M])$ vs time for the AROP of *t*BuGE initiated by benzyl alcohol-*t*BuP₄ in the presence of *i*Bu₃Al in MeTHF at 25°C ($[M]_0 = 2 \text{ mol.L}^{-1}$; $[I]_0 = 3.7 \times 10^{-2} \text{ mol.L}^{-1}$, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S24. Monomer conversion and $ln([M]_0/[M])$ vs time for the AROP of BnGE initiated by benzyl alcohol-*t*BuP₄ in the presence of *i*Bu₃Al in MeTHF at 25°C ($[M]_0 = 2 \text{ mol.L}^{-1}$; $[I]_0 = 3.7 \times 10^{-2} \text{ mol.L}^{-1}$, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S25. MALDI-TOF spectrum of poly(PO) (MeTHF, 25°C, $[M]_0 = 2 \text{ mol.L}^{-1}$, [benzyl alcohol] = 3,7 x 10⁻² mol.L⁻¹, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S26. MALDI-TOF spectrum of poly(BO) (MeTHF, 25°C, $[M]_0 = 2 \text{ mol.L}^{-1}$, [benzyl alcohol] = 3,7 x10⁻² mol.L⁻¹, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S27. MALDI-TOF spectrum of poly(tBuGE) (MeTHF, 25°C, $[M]_0 = 2 \text{ mol.L}^{-1}$, [benzyl alcohol] = 3,7 x 10⁻² mol.L⁻¹, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).

Figure S28. MALDI-TOF spectrum of poly(AGE) (MeTHF, 25°C, $[M]_0 = 2 \text{ mol.L}^{-1}$, $[benzyl alcohol] = 3,7 x 10^{-2} \text{ mol.L}^{-1}$, $Benzyl Alcohol:t-BuP_4:i-Bu_3Al (1:1:2)$).

Figure S29. MALDI-TOF spectrum of poly(EEGE) (MeTHF, 25°C, $[M]_0 = 2 \text{ mol.L}^{-1}$, $[benzyl alcohol] = 3,7 x 10^{-2} \text{ mol.L}^{-1}$, Benzyl Alcohol:*t*-BuP₄:*i*-BuP₄

Figure S30. MALDI-TOF spectrum of poly(BnGE) (MeTHF, 25°C, $[M]_0 = 2 \text{ mol.L}^{-1}$, $[benzyl alcohol] = 3,7 x 10^{-2} \text{ mol.L}^{-1}$, Benzyl Alcohol:*t*-BuP₄:*i*-Bu₃Al (1:1:2)).