
Supplementary Materials:

Photoinitiators Derived From Natural Product Scaffolds: Mono-Chalcones in Three-Component Photoinitiating Systems and their Applications in 3D Printing

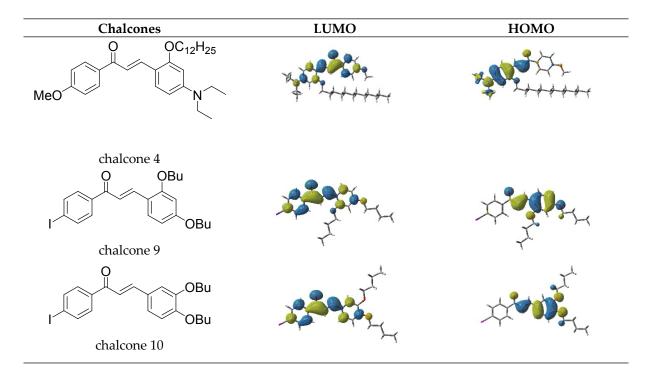

Hong Chen¹, Guillaume Noirbent², Ke Sun¹, Damien Brunel², Didier Gigmes², Fabrice Morlet-Savary¹, Yijun Zhang¹, Shaohui Liu¹, Pu Xiao^{3*}, Frédéric Dumur^{2*}, Jacques Lalevée^{1*}

Table S1. Summary of the FCs at 405 nm of monomers (PEG-diacrylate), under three-component photopolymerization systems between other chalcones (1.5%, w/w), iodonium salt (Speedcure 938, 1.5%, w/w) and amine (Speedcure EDB, 1.5%, w/w) between the thin films.

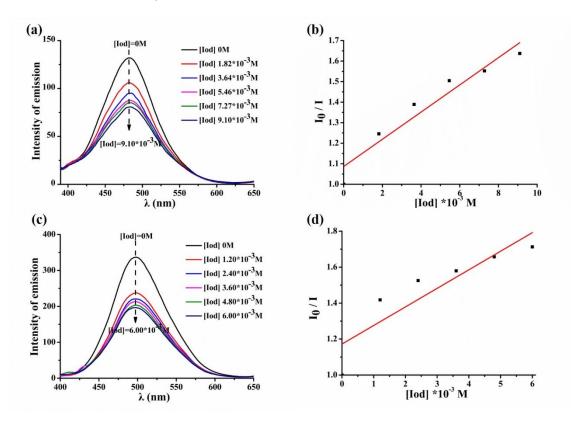

Chalcone initiating systems in PEG-diacrylate							
Chalcone	1	2	3	5	6	7	11
FCs	87.2%	81.4%	86.0%	71.4%	77.3%	80.5%	57.1%
Chalcone	12	13	14	15	16	17	18
FCs	58%	73.3%	73.5%	79.4%	64.6%	69%	79.5%
Chalcone	19	20	21	22	23	Blank	
FCs	73.5%	40.3%	74.7%	30.5%	79.5%	49%	

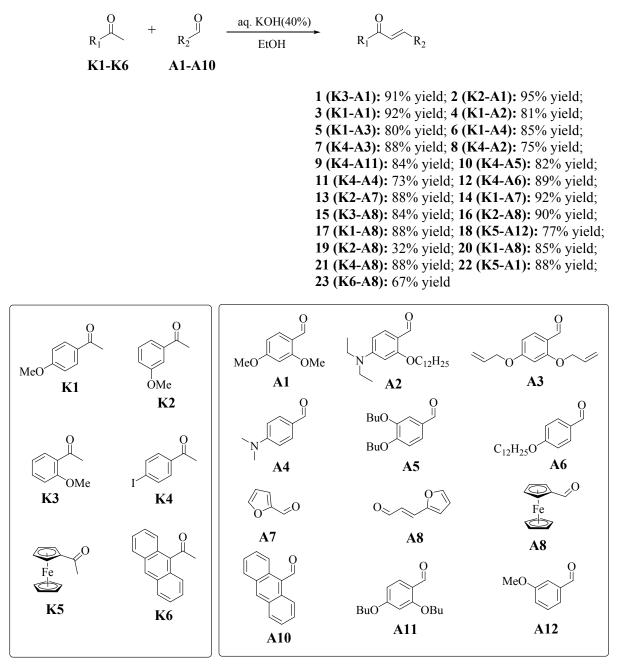
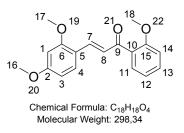
Figure S1. The photopolymerization profiles of PEG-diacrylate (conversion rate of C=C bonds vs irradiation time) initiated by iodonium salt (Speedcure 938) and amine (Speedcure EDB) upon exposure to LED@405nm in laminate, at the same weight ratio chalcones : Speedcure 938 : Speedcure EDB = 1.5%:1.5%:1.5% (w/w/w) in 1g PEG, in the presence of chalcone 12 in thick molds.

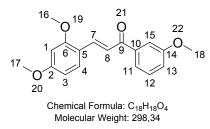
Figure S2. Contour plots of HOMOs and LUMOs for chalcone 4, 9 and 10 structures optimized at the B3LYP/6-31G* level of theory of chalcones 4, 9 and 10.

Figure S3. (a) Fluorescence quenching of chalcone 9 by iodonium salt (Speedcure 938); (b) Stern–Volmer treatment for the chalcone 9/iodonium salt fluorescence quenching; (c) Fluorescence quenching of chalcone 10 by iodonium salt (Speedcure 938); (d) Stern–Volmer treatment for the chalcone 10/Iod salt fluorescence quenching. [From the equation (2) : $\Phi^{\text{et}}_{\text{Iod}} = K^{\text{sv}}_{\text{Iod}} * [\text{Iod}]/(1 + K^{\text{sv}}_{\text{Iod}} * [\text{Iod}])]$

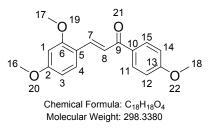
Synthesis of Chalcones 1-23

All reagents and solvents were purchased from Aldrich or Alfa Aesar and used as received without further purification. Mass spectroscopy was performed by the Spectropole of Aix-Marseille University. ESI mass spectral analyses were recorded with a 3200 QTRAP (Applied Biosystems SCIEX) mass spectrometer. The HRMS mass spectral analysis was performed with a QStar Elite (Applied Biosystems SCIEX) mass spectrometer. Elemental analyses were recorded with a Thermo Finnigan EA 1112 elemental analysis apparatus driven by the Eager 300 software. ¹H and ¹³C NMR spectra were determined at room temperature in 5 mm o.d. tubes on a Bruker Avance 400 spectrometer of the Spectropole: ¹H (400 MHz) and ¹³C (100 MHz). The ¹H chemical shifts were referenced to the solvent peaks DMSO (2.49 ppm), CDCl₃ (7.26 ppm) and the ¹³C chemical shifts were referenced to the solvent peak DMSO (49.5 ppm), CDCl₃ (77.0 ppm). All photoinitiators were prepared with analytical purity up to accepted standards for new organic compounds (>98%) which was checked by high field NMR analysis.

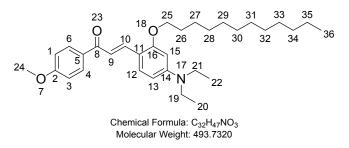




Figure S4. Synthetic route to chalcones 1-23.

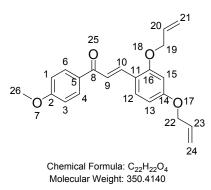
Synthesis of (E)-3-(2,4-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (chalcone 1)


2,4-Dimethoxybenzaldehyde (3.32 g, 20 mmol, M = 166.18 g/mol) and 2'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (5.43 g, 91% yield). ¹H NMR (CDCl₃) δ : 3.87 (s, H₁₆, 3H), 3.88 (s, H₁₈, 3H), 3.91 (s, H₁₇, 3H), 6.48 (d, H₁, 1H, J = 2.3 Hz), 6.53 (dd, H₃, 1H, J = 8.6 Hz, J = 2.5 Hz), 6.99-7.07 (m, H_{12,13}, 2H), 7.34 (d, H₈, 1H, J = 16.0 Hz), 7.43-7.47 (m, H₁₄, 1H), 7.55 (d, H₁₁, 1H, J = 8.6 Hz), 7.60 (dd, H₄, 1H, J = 7.5 Hz, J = 1.8 Hz), 7.89 (d, H₇, 1H, J = 16.0 Hz); ¹³C NMR (CDCl₃) δ : 55.5(C_{16,18}), 55.7(C₁₇), 98.4(C₁), 105.4(C₃), 111.6(C₁₄), 117.6(C₅), 120.6(C8), 125.4(C₁₂), 129.9(C₁₁), 130.1(C₄), 130.4(C₁₀), 132.2(C₁₃), 139.3(C₇), 157.8(C₁₅), 160.2(C₆), 162.9(C₂), 193.8(C₉); HRMS (ESI MS) m/z: theor: 299.1278 found: 299.1279 ([M+H]⁺ detected).

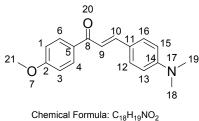
Synthesis of (E)-3-(2,4-dimethoxyphenyl)-1-(3-methoxyphenyl)prop-2-en-1-one (chalcone 2)


2,4-Dimethoxybenzaldehyde (3.32 g, 20 mmol, M = 166.18 g/mol) and 3'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (5.67 g, 95% yield). ¹H NMR (CDCl₃) δ : 3.86 (s, H₁₈, 3H), 3.88 (s, H₁₇, 3H), 3.90 (s, H₁₆, 3H), 6.47 (d, H₁, 1H, J = 2.3 Hz), 6.54 (dd, H₃, 1H, J = 8.5 Hz, J = 2.3 Hz), 7.08-7.12 (m, H₁₂, 1H), 7.34-7.42 (m, H₁₃, 1H), 7.48-7.49 (m, H₄, 1H), 7.53-7.60 (m, H_{11,15,8}, 3H), 8.05 (d, H₇, 1H, J = 15.8 Hz); ¹³C NMR (CDCl₃) δ : 55.4(C₁₇), 55.5(C₁₈), 55.6(C₁₆), 98.5(C₁), 105.4(C₃), 112.8(C₁₅), 117.2(C₁₂), 118.8(C₅), 120.5(C₁₃), 121.0(C₈), 129.4(C₄), 131.0(C₁₁), 140.3(C₁₀), 140.6(C₇), 159.8(C₆), 160.4(C₁₄), 163.1(C₂), 190.9(C₉); HRMS (ESI MS) m/z: theor: 299.1278 found: 299.1277 ([M+H]⁺ detected).

Synthesis of (E)-3-(2,4-dimethoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (chalcone 3)

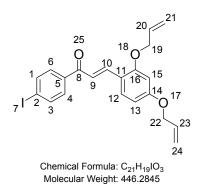

2,4-Dimethoxybenzaldehyde (3.32 g, 20 mmol, M = 166.18 g/mol) and 4'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (5.49 g, 92% yield). ¹H NMR (CDCl₃) δ : 3.85 (s, H₁₈, 3H), 3.88 (s, H₁₆, 3H), 3.90 (s, H₁₇, 3H), 6.48 (d, H₁, 1H, J = 2.3 Hz), 6.53 (dd, H₃, 1H, J = 8.6 Hz, J = 2.5 Hz), 6.97 (d, H_{12,14}, 2H, J = 8.9 Hz), 7.43-7.47 (m, H₈, 1H), 7.53-7.58 (m, H₄, 1H), 8.01-8.03 (m, H_{7,11,15}, 3H); ¹³C NMR (CDCl₃) δ : 55.4(C₁₈), 55.5(C₁₆), 55.6(C₁₇), 98.5(C₁), 105.4(C₃), 113.7(C_{12,14}), 117.4(C₅), 120.4(C₈), 130.6(C₁₀), 130.7(C₁₁), 130.8(C₁₅), 131.8(C₄), 139.7(C₇), 160.3(C₆), 162.9(C₂), 163.1(C₁₃), 189.4(C₉); HRMS (ESI MS) m/z: theor: 299.1278 found: 299.1275 ([M+H]⁺ detected).

Synthesis of (E)-3-(4-(diethylamino)-2-(dodecyloxy)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (chalcone 4)

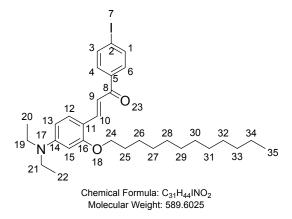

4-(Diethylamino)-2-(dodecyloxy)benzaldehyde (7.23 g, 20 mmol, M = 361.57 g/mol) and 4'methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (8.00 g, 81% yield). ¹H NMR (300 MHz, CDCl₃) δ: 8.05 – 7.97 (m, H_{4,6,8}, 3H), 7.56 (d, H₉, J = 15.5 Hz, 1H), 7.44 (d, H₁₂, J = 8.9 Hz, 1H), 6.98 – 6.91 (m, H_{1,3}, 2H), 6.28 (dd, H₁₃, J = 8.8, 2.4 Hz, 1H), 6.13 (d, H₁₅, J = 2.4 Hz, 1H), 4.04 (t, H₂₅, J = 6.4 Hz, 2H), 3.87 (s, H₂₄, 3H), 3.41 (q, H_{19,21}, J = 7.1 Hz, 4H), 1.97 - 1.83 (m, H₂₆, 2H), 1.61 - 1.49 (m, H₂₇, 2H), 1.41 – 1.24 (m, H₂₈₋₃₅, 16H), 1.21 (t, H_{20,22}, J = 7.1 Hz, 6H), 0.88 (t, H₃₆, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 189.7(C₈), 162.8(C₂), 160.8(C₁₆), 151.0(C₁₄), 141.5(C₁₀), 132.6(C_{5,12}), 130.6(C_{4,6}), 117.3(C₉), $113.7(C_{11}), 112.2(C_{1,3}), 104.4(C_{13}), 94.9(C_{15}), 68.3(C_{25}), 55.5(C_{24}), 44.8(C_{19,21}), 32.1(C_{26}), 29.8(C_{27}), 29.8(C_{28,29}), 32.1(C_{26}), 29.8(C_{27}), 29.8(C_{28,29}), 32.1(C_{26}), 29.8(C_{27}), 29.8(C_{28,29}), 32.1(C_{26}), 32.1(C_{26})$ 29.8(C₃₀), 29.7(C₃₁), 29.6(C₃₂), 29.5(C₃₃), 26.6(C₃₄), 22.8(C₃₅), 14.3(C₃₆), 12.9(C_{20,22}); HRMS (ESI MS) m/z: theor: 494.3629 found: 494.3632 ([M+H]⁺ detected).

Synthesis of (E)-3-(2,4-bis(allyloxy)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (chalcone 5)

2,4-*Bis*(allyloxy)benzaldehyde (4.36 g, 20 mmol, M = 218.25 g/mol) and 4'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (5.60 g, 80% yield). ¹H NMR (300 MHz, CDCl₃) δ : 8.08 – 7.99 (m, H_{4,6,10}, 3H), 7.59 (d, H₉, J = 15.5Hz, 1H), 7.55 (d, H₁₂, J = 8.5 Hz, 1H), 6.99 – 6.93 (m, H_{1,3}, 2H), 6.56 – 6.51 (m, H₁₃, 1H), 6.50 (d, H₁₅, J = 2.3 Hz, 1H), 6.18 – 5.97 (m, H_{20,23}, 2H), 5.50 – 5.37 (m, H_{21,24}, 2H), 5.36 – 5.27 (m, H_{21,24}, 2H), 4.61 (dt, H₁₉, J = 5.3, 1.5 Hz, 2H), 4.56 (dt, H₂₂, J = 5.3, 1.5 Hz, 2H), 3.87 (s, H₂₆, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 189.4(C₈), 163.2(C₂), 161.7(C₁₆), 159.4(C₁₄), 139.8(C₁₀), 132.9(C₂₃), 132.8(C₂₀), 131.8(C₆), 131.1(C₄), 130.8(C₁₂), 130.7(C₅), 120.6(C₉), 118.2(C₂₁), 118.2(C₂₄), 117.8(C₁₁), 113.8(C_{1,3}), 106.6(C₁₃), 100.5(C₁₅), 69.4(C₁₉), 69.1(C₂₂), 55.6(C₂₆); HRMS (ESI MS) m/z: theor: 351.1591 found: 351.1590 ([M+H]⁺ detected).

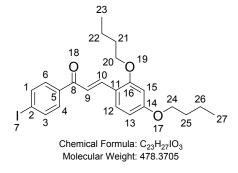

Synthesis of (E)-3-(4-(dimethylamino)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (chalcone 6)

Molecular Weight: 281,36

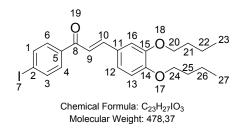

4-(Dimethylamino)benzaldehyde (2.98 g, 20 mmol, M = 149.19 g/mol) and 4'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (4.78 g, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.05 – 8.00 (m, H_{4,6}, 2H), 7.78 (d, H₁₀, J = 15.4 Hz, 1H), 7.58 – 7.53 (m, H_{12,16}, 2H), 7.35 (d, H₉, J = 15.4 Hz, 1H), 7.00 – 6.95 (m, H_{1,3}, 2H), 6.72 – 6.67 (m, H_{13,15}, 2H), 3.88 (s, H₂₁, 3H), 3.04 (s, H_{18,19}, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 189.1(C₈), 163.1(C₂), 152.1(C₁₄), 145.1(C₁₀), 132.1(C_{4,6}), 130.7(C₅), 130.4(C_{12,16}), 123.1(C₁₁), 117.0(C₉), 113.8(C_{1,3}), 112.0(C_{13,15}), 55.6(C₂₁), 40.3(C_{18,19}); HRMS (ESI MS) m/z: theor: 282.1489 found: 282.1493 ([M+H]⁺ detected).

Synthesis of (E)-3-(2,4-bis(allyloxy)phenyl)-1-(4-iodophenyl)prop-2-en-1-one (chalcone 7)

2,4-Bis(allyloxy)benzaldehyde (4.36 g, 20 mmol, M = 218.25 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (7.85 g, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, H₁₀, J = 15.8 Hz, 1H), 7.86 – 7.81 (m, H_{1,3}, 2H), 7.74 – 7.69 (m, H_{9,12}, 2H), 7.56 – 7.50 (m, H_{4,6}, 2H), 6.55 (dd, H₁₃, J = 8.6, 2.3 Hz, 1H), 6.50 (d, H₁₅, J = 2.3 Hz, 1H), 6.16 – 5.99 (m, H_{20,23}, 2H), 5.49 – 5.39 (m, H_{21,24}, 2H), 5.37 – 5.30 (m, H_{21,24}, 2H), 4.61 (dt, H₁₉, J = 5.2, 1.4 Hz, 2H), 4.58 (dt, H₂₂, J = 5.3, 1.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ : 190.4(C₈), 162.2(C₁₄), 159.6(C₁₆), 141.3(C₁₀), 138.3(C_{1,3}), 137.9(C₅), 132.8(C₂₀), 132.8(C₂₃), 131.5(C₁₂), 130.1(C_{4,6}), 120.2(C₉), 118.4(C₂₄), 118.3(C₂₁), 117.5(C₁₁), 106.7(C₁₃), 100.5(C₁₅), 100.0(C₂), 69.4(C₁₉), 69.2(C₂₂); HRMS (ESI MS) m/z: theor: 447.0452 found: 447.0455 ([M+H]⁺ detected).

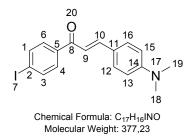

Synthesis of (E)-3-(4-(diethylamino)-2-(dodecyloxy)phenyl)-1-(4-iodophenyl)prop-2-en-1-one (chalcone 8)

4-(Diethylamino)-2-(dodecyloxy)benzaldehyde (7.23 g, 20 mmol, M = 361.57 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (8.84 g, 75% yield). ¹H NMR (300 MHz, CDCl₃) δ : 8.02 (d, H₁₀, J = 15.5 Hz, 1H), 7.84 – 7.78 (m, H_{1;3}, 2H), 7.72 – 7.68 (m, H_{4,6}, 2H), 7.47 (d, H₉, J = 14.8 Hz, 1H), 7.43 (d, H₁₂, J = 8.3 Hz, 1H), 6.28 (dd, H₁₃, J = 8.8, 2.4 Hz, 1H), 6.11 (d, H₁₅, J = 2.4 Hz, 1H),

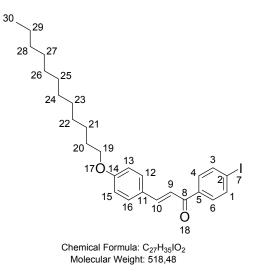

4.04 (t, H_{24} , J = 6.3 Hz, 2H), 3.41 (q, $H_{19,21}$, J = 7.1 Hz, 4H), 1.94 – 1.83 (m, H_{25} , 2H), 1.57 – 1.46 (m, H_{26} , 2H), 1.43 – 1.25 (m, $H_{27\cdot34}$, 16H), 1.21 (t, $H_{20,22}$, J = 7.1 Hz, 6H), 0.91 – 0.85 (t, H_{35} , J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 190.4(C₈), 161.1(C₁₆), 151.4(C₁₄), 142.95(C₁₀), 139.2(C_{1.3}), 137.7(C₅), 132.9(C_{4.6}), 130.0(C₁₂), 116.7(C₉), 111.9(C₁₁), 104.5(C₁₃), 99.2(C₂), 94.7(C₁₅), 68.3(C₂₄), 44.8(C_{19,21}), 34.3(C₂₅), 32.1(C₂₆), 29.8(C₂₇), 29.8(C₂₈), 29.7(C₂₉), 29.6(C₃₀), 29.5(C₃₁), 26.6(C₃₂), 22.8(C₃₃), 22.5(C₃₄), 14.3(C₂₂), 14.2(C₂₀), 12.8(C₃₅); HRMS (ESI MS) m/z: theor: 590.2489 found: 590.2491 ([M+H]⁺ detected).

Synthesis of (E)-3-(2,4-dibutoxyphenyl)-1-(4-iodophenyl)prop-2-en-1-one (chalcone 9)

2,4-Dibutoxybenzaldehyde (5.00 g, 20 mmol, M = 250.34 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (8.03 g, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, H₁₀, J = 15.7 Hz, 1H), 7.85 – 7.81 (m, H_{1,3}, 2H), 7.73 – 7.68 (m, H_{4,6}, 2H), 7.56 (d, H₉, J = 15.7 Hz, 1H), 7.51 (d, H₁₂, J = 8.6 Hz, 1H), 6.51 (dd, H₁₃, J = 8.6, 2.3 Hz, 1H), 6.46 (d, H₁₅, J = 2.3 Hz, 1H), 4.02 (dt, H_{20,24}, J = 16.2, 6.4 Hz, 4H), 1.92 – 1.81 (m, H₂₁, 2H), 1.82 – 1.74 (m, H₂₅, 2H), 1.62 – 1.45 (m, H_{22,26}, 4H), 1.00 (dt, H_{23,27}, J = 9.4, 7.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 190.6(C₈), 162.9(C₁₄), 160.4(C₁₆), 142.0(C₁₀), 138.4(C₁₃), 137.9(C₅), 132.1(C_{4,6}), 130.0(C₁₂), 119.9(C₉), 117.0(C₁₁), 106.1(C₁₃), 99.9(C₁₅), 99.8(C₂), 68.4(C₂₄), 68.1(C₂₀), 31.5(C₂₅), 31.4(C₂₁), 19.6(C₂₆), 19.4(C₂₂), 14.0(C₂₇), 14.0(C₂₃); HRMS (ESI MS) m/z: theor: 479.1078 found: 479.1082 ([M+H]⁺ detected).

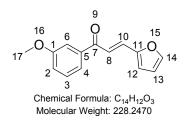

Synthesis of (E)-3-(3,4-dibutoxyphenyl)-1-(4-iodophenyl)prop-2-en-1-one (chalcone 10)

3,4-Dibutoxybenzaldehyde (5.00 g, 20 mmol, M = 250.34 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (7.84 g, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ :

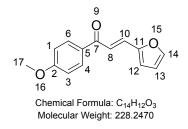

7.88 – 7.84 (m, H_{1,3}, 2H), 7.74 (d, H₁₀, J = 13.5 Hz, 1H), 7.72 – 7.68 (m, H_{4,6}, 2H), 7.28 (d, H₉, J = 15.6 Hz, 1H), 7.20 (dd, H₁₂, J = 8.3, 2.0 Hz, 1H), 7.16 (d, H₁₆, J = 2.0 Hz, 1H), 6.89 (d, H₁₃, J = 8.3 Hz, 1H), 4.06 (t, H_{20,24}, J = 6.6 Hz, 4H), 1.88 – 1.78 (m, H_{21,25}, 4H), 1.58 – 1.48 (m, H_{22,26}, 4H), 1.00 (td, H_{23,27}, J = 7.4, 4.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 190.0(C₈), 152.2(C₁₄), 149.5(C₁₅), 146.0(C₁₀), 138.0(C_{1,3}), 138.0(C₅), 130.0(C_{4,6}), 127.7(C₁₁), 123.6(C₁₂), 119.4(C₉), 113.2(C₁₃), 113.2(C₁₆), 100.3(C₂), 69.4(C₂₄), 69.0(C₂₀), 31.5(C₂₅), 31.3(C₂₁), 19.4(C₂₂), 19.4(C₂₆), 14.0(C₂₇); HRMS (ESI MS) m/z: theor: 479.1078 found: 479.1080 ([M+H]⁺ detected).

Synthesis of (E)-3-(4-(dimethylamino)phenyl)-1-(4-iodophenyl)prop-2-en-1-one (chalcone 11)

4-(Dimethylamino)benzaldehyde (2.98 g, 20 mmol, M = 149.19 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (5.51 g, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.86 – 7.82 (m, H₁₆, 2H), 7.79 (d, H₁₀, J = 15.5 Hz, 1H), 7.74 – 7.69 (m, H₁₆, 2H), 7.57 – 7.51 (m, H₁₆, 2H), 7.25 (d, H₉, J = 15.5 Hz, 1H), 6.73 – 6.65 (m, H₁₆, 2H), 3.05 (s, H_{18,19}, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 189.9(C₈), 152.4(C₁₄), 146.6(C₁₀), 138.6(C_{1,3}), 137.9(C₅), 130.7(C_{4,6}), 130.0(C_{12,16}), 122.6(C₁₁), 116.4(C₉), 112.0(C_{13,15}), 99.8(C₂), 40.3(C_{18,19}); HRMS (ESI MS) m/z: theor: 378.0349 found: 378.0355 ([M+H]⁺ detected).

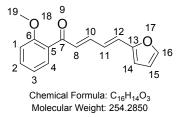

Synthesis of (E)-3-(4-(dodecyloxy)phenyl)-1-(4-iodophenyl)prop-2-en-1-one (chalcone 12)

4-Dodecyloxybenzaldehyde (5.81 g, 20 mmol, M = 290.44 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was

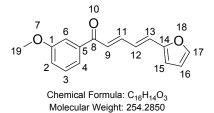

dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (9.23 g, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.87 – 7.83 (m, H_{1,3}, 2H), 7.77 (d, H₁₀, J = 15.5 Hz, 1H), 7.73 – 7.69 (m, H_{12,16}, 2H), 7.57 (t, H_{4,6}, J = 5.7 Hz, 2H), 7.32 (d, H₉, J = 15.6 Hz, 1H), 6.92 (q, H_{13,15}, J = 3.1 Hz, 2H), 4.00 (t, H₁₉, J = 6.6 Hz, 2H), 1.84 – 1.74 (m, H₂₀, 2H), 1.45 (m, H₂₁, 2H), 1.39 – 1.22 (m, H₂₂₋₂₉, 16H), 0.88 (t, H₃₀, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 189.7 (C₈), 161.5(C₁₄), 145.4(C₁₀), 138.0(C_{1,3}), 137.8(C₅), 130.3(C_{12,16}), 129.9(C₄), 129.5(C₆), 127.2(C₁₁), 126.9(C₉), 119.0(C₂), 115.0(C₁₃), 114.6(C₁₅), 68.3(C₁₉), 31.9(C₂₀), 29.6(C₂₁), 29.6(C₂₂), 29.5(C₂₃), 29.4(C₂₄), 29.3(C₂₅), 29.1(C₂₆), 26.0(C₂₇), 26.0(C₂₈), 22.7(C₂₉), 14.1(C₃₀); HRMS (ESI MS) m/z: theor: 519.1754 found: 519.1752 ([M+H]⁺ detected).

Synthesis of (E)-3-(furan-2-yl)-1-(3-methoxyphenyl)prop-2-en-1-one (chalcone 13)

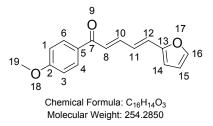
Furfural (1.92 g, 20 mmol, M = 96.08 g/mol) and 3'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (4.02 g, 88% yield). ¹H NMR (CDCl₃) δ : 3.88 (s, 3H, H₁₇), 6.51-6.52 (m, 1H, H₁₃), 6.72 (d, 1H, J = 3.4 Hz, H₂), 7.11-7.14 (m, 1H, H₆), 7.38-7.45 (m, 2H, H₃ and H₈), 7.52-7.53 (m, 1H, H₁₂), 7.55-7.56 (m, 1H, H₁₀), 7.57-7.62 (m, 2H, H₁₄ and H₄); ¹³C NMR (CDCl₃) δ : 55.5 (C₁₇), 112.6 (C₁₃), 112.7 (C₃), 116.2(C₁₂), 119.4 (C₂), 119.5 (C₂), 121.0 (C₁₀), 129.6 (C₈), 130.7 (C₅), 139.4 (C₄, C₆), 144.9 (C₁₄), 151.7 (C₁₁), 159.9 (C₁, C₃), 189.6 (C₇); HRMS (ESI MS) m/z: theor: 229.0859 found: 229.0862 ([M+H]⁺ detected).


Synthesis of (E)-3-(furan-2-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (chalcone 14)

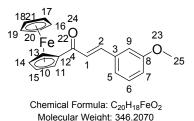
Furfural (1.92 g, 20 mmol, M = 96.08 g/mol) and 4'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (4.20 g, 92% yield). ¹H NMR (CDCl₃) δ : 3.88 (s, 3H, H₁₇), 6.50-6.51 (m, 1H, H₁₃), 6.70 (d, 1H, J = 3.4 Hz, H₁₂), 6.97 (d, 2H, J = 9.0 Hz, H₁, H₃), 7.46 (d, 1H, J = 15.3 Hz, H₈), 7.51 (d,


1H, J = 1.4 Hz, H₁₄), 7.58 (d, 1H, J = 15.3 Hz, H₁₀), 8.04 (d, 2H, J = 9.0 Hz, H₄, H₆); ¹³C NMR (CDCl₃) δ : 55.5 (C₁₇), 112.6 (C₁₃), 113.8 (C₁₂), 115.7 (C₁, C₃), 119.3 (C₁₀), 130.0 (C₉), 130.7 (C₅), 131.1 (C₄, C₆), 144.7 (C₁₇), 151.9 (C₁₄), 163.4 (C₂), 188.1 (C₇); HRMS (ESI MS) m/z: theor: 229.0859 found: 229.080 ([M+H]⁺ detected).

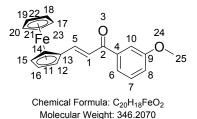
Synthesis of (2E,4E)-5-(furan-2-yl)-1-(2-methoxyphenyl)penta-2,4-dien-1-one (chalcone 15)


3-(Furan-2-yl)acrylaldehyde (2.44 g, 20 mmol, M = 122.12 g/mol) and 2'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (4.27 g, 84% yield). ¹H NMR (CDCl₃) δ : 3.81 (s, 3H, H₁₉), 6.36-6.39 (m, 2H, H₁₅, H₁₂), 6.63 (d, 1H, J = 15.3 Hz, H₁₁), 6.77-6.82 (m, 1H, H₁₄), 6.84 (d, 1H, J = 8.4 Hz, H₈), 6.89-6.96 (m, 2H, H₁, H₂), 7.24-7.31 (m, 1H, H₄), 7.35-7.39 (m, 2H, H₇, H₁₆), 7.50 (dd, 1H, J = 7.6 Hz, J = 1.8 Hz, H₃); ¹³C NMR (CDCl₃) δ : 55.7 (C₁₉), 111.6 (C₁), 111.8 (C₁₅), 112.2 (C₁₄), 120.7 (C₁₂), 125.7 (C₃), 127.6 (C₄), 129.4 (C₈), 130.3 (C₅), 130.4 (C₂), 132.7 (C₁₁), 142.9 (C₁₆), 143.7 (C₁₀), 152.5 (C₁₃), 158.1 (C₆), 192.7 (C₇); HRMS (ESI MS) m/z: theor: 255.1016 found: 255.1019 ([M+H]⁺ detected).

Synthesis of (2E,4E)-5-(furan-2-yl)-1-(3-methoxyphenyl)penta-2,4-dien-1-one (chalcone 16)

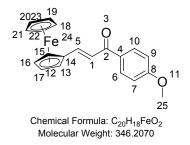

3-(Furan-2-yl)acrylaldehyde (2.44 g, 20 mmol, M = 122.12 g/mol) and 3'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (4.58 g, 90% yield). ¹H NMR (CDCl₃) δ : 3.87 (s, 3H, H₁₉), 6.45-6.46 (m, 1H, H₁₆), 6.49-6.50 (m, 1H, H₁₂), 6.78 (d, 1H, J = 15.4 Hz, H₁₃), 6.89-6.96 (m, 1H, H₁₅), 7.06 (d, 1H, J = 1.6 Hz), 7.10-7.12 (m, 1H, H₂), 7.39 (t, 1H, J = 14.8 Hz, H₉), 7.46 (d, 1H, J = 1.6 Hz, H₆), 7.50-7.58 (m, 3H, H₄, H₁₁, H₁₇); ¹³C NMR (CDCl₃) δ : 55.5 (C₁₉), 112.3 (C₁₆), 112.7 (C₁₅), 119.2 (C₆), 120.9 (C₃), 125.3 (C₁₃), 125.4 (C₂), 128.3 (C₉), 129.5 (C₅), 139.7 (C₄), 143.9 (C₁₂), 144.4 (C₁₇, C₁₁), 152.4 (C₁₄), 159.9 (C₁), 190.0 (C₈); HRMS (ESI MS) m/z: theor: 255.1016 found: 255.1014 ([M+H]⁺ detected).

Synthesis of (2E,4E)-5-(furan-2-yl)-1-(4-methoxyphenyl)penta-2,4-dien-1-one (chalcone 17)

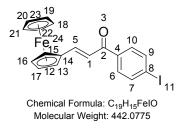


3-(Furan-2-yl)acrylaldehyde (2.44 g, 20 mmol, M = 122.12 g/mol) and 4'-methoxyacetophenone (3.00 g, 20 mmol, M = 150.18 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (4.48 g, 88% yield). ¹H NMR (CDCl₃) δ : 3.88 (s, 3H, H₁₉), 6.44-6.48 (m, 2H, H₁₅, H₁₁), 6.76 (d, 1H, J = 15.3 Hz, H₁₂), 6.89-6.95 (m, 1H, H₁₄), 6.96 (d, 2H, J = 8.9 Hz, H₁, H₃), 7.09 (d, 2H, J = 8.9 Hz, H₄, H₆); ¹³C NMR (CDCl₃) δ : 55.5 (C₁₉), 112.0 (C₁₅), 112.2 (C₁₄), 125.1 (C₁, C₃), 125.5 (C₁₂), 127.8 (C₈), 128.3 (C₅), 129.7 (C₄, C₆), 130.6 (C₁₁), 143.5 (C₁₆), 143.7 (C₁₀), 152.5 (C₁₃), 163.3 (C₂), 188.5 (C₇); HRMS (ESI MS) m/z: theor: 255.1016 found: 255.1012 ([M+H]⁺ detected).

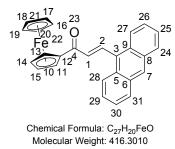
Synthesis of [3-(3-methoxyphenyl)-1-oxo-2-propen-1-yl]ferrocene (chalcone 18)



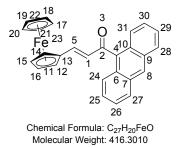
Acetylferrocene (2 g, 13.15 mmol, M = 228.07 g/mol) and KOH (0.74 g, 13.15 mmol, M = 56.11 g/mol) were dissolved in ethanol (20 mL) in a round bottomed flask. 2-Methoxybenzaldehyde (1.6 mL, 13.15 mmol, M = 136.15 g/mol) was added and the mixture was stirred at room temperature for 24 h. The reaction was stopped by neutralizing the stirred solution with 2M HCl. A dark red precipitate after neutralization appeared. It was then removed by filtration, washed with water, some cold ethanol, and pentane. A column chromatography with ether as eluent allowed to obtain 3.5 g, 77% yield of product as a powder. ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, J = 15.6 Hz, 1H, H₂), 7.37 (t, J = 7.9 Hz, 1H, H₅), 7.28 (d, J = 7.2 Hz, 1H, H₇), 7.22 – 7.09 (m, 2H, H₁, H₉), 6.99 (dd, J = 8.0, 1.8 Hz, 1H, H₆), 4.94 (s, 2H, H₁₄, H₁₅), 4.61 (s, 2H, H₁₁, H₁₃), 4.24 (s, 5H, H₁₆-H₂₁), 3.89 (s, 3H, H₂₅); HRMS (ESI MS) m/z: theor: 347.0729 found: 347.0728 ([M+H]⁺ detected); Anal. Calc. for C₂₀H₁₈FeO₂: C, 69.4; H, 5.2; O, 9.2; Found: C, 69.6; H, 5.2; O, 9.1 %. Analyses were consistent with those previously reported in the literature. [E. Solcaniova, S. Toma, A. Fiedlerova, Investigation of substituent effects on the proton and carbon-13 NMR spectra of ferrocene analogs of chalcones, Organ. Magnet. Res. 1980, 14, 181-185].


3'-Methoxyacetophenone (2.81 g, 18.69 mmol, M = 150.18 g/mol) and KOH (1.05 g, 18.69 mmol, M = 56.11 g/mol) were dissolved in ethanol (20 mL) in a round bottomed flask and stirred at room temperature (r.t.) for 10 min. Ferrocenecarboxaldehyde (4 g, 18.69 mmol, M = 214.04 g/mol) was added and the mixture was stirred at room temperature for 24 h. The reaction was stopped by neutralizing the stirred solution with 2M HCl. A dark red precipitate after neutralization appeared. It was then removed by filtration, washed with water, some cold ethanol, and pentane. A column chromatography with ether as eluent allowed to obtain 2.11g, 32% yield of product as powder. ¹H NMR (300 MHz, CDCl₃) δ : 7.75 (d, J = 15.4 Hz, 1H, H₁), 7.63 – 7.48 (m, 2H, H₇, H₁₀), 7.40 (t, J = 7.9 Hz, 1H, H₈), 7.17 – 7.05 (m, 2H, H₅, H₆), 4.64 – 4.56 (m, 2H, H₁₅, H₁₆), 4.53 – 4.45 (m, 2H, H₁₂, H₁₄), 4.18 (s, 5H, H₁₇-H₂₁), 3.88 (s, 3H, H₂₅); HRMS (ESI MS) m/z: theor: 347.0729 found: 347.0730 ([M+H]⁺ detected); Anal. Calc. for C₂₀H₁₈FeO₂ : C, 69.4; H, 5.2; O, 9.2; Found: C, 69.5; H, 5.1; O, 9.0 %. Analyses were consistent with those previously reported in the literature [E. Solcaniova, S. Toma, A. Fiedlerova, Investigation of substituent effects on the proton and carbon-13 NMR spectra of ferrocene analogs of chalcones, Organ. Magnet. Res. 1980, 14, 181-185].

Synthesis of [3-(4-methoxyphenyl)-3-oxo-1-propen-1-yl]ferrocene (chalcone 20)


The substituted ketone (2.81 g, 18.69 mmol, M = 150.18 g/mol) and KOH (1.05 g, 18.69 mmol, M = 56.11 g/mol) were dissolved in ethanol (20 mL) in a round bottomed flask. The substituted aldehyde (4 g, 18.69 mmol, M = 214.04 g/mol) was added and the mixture was stirred at room temperature for 24 h. The reaction was stopped by neutralizing the stirred solution with 2M HCl. A dark red precipitate after neutralization appeared. It was then removed by filtration, washed with water, some cold ethanol, and pentane. A column chromatography with ether as eluent allowed to obtain 5.5 g, 85 % yield of product as a powder. ¹H NMR (300 MHz, CDCl₃) δ : 8.00 (d, J = 8.8 Hz, 2H, H₇, H₉), 7.74 (d, J = 15.3 Hz, 1H, H₁), 7.15 (d, J = 15.3 Hz, 1H, H₅), 6.98 (d, J = 8.8 Hz, 2H, H₆, H₁₀), 4.59 (s, 2H, H₁₃, H₁₅), 4.47 (s, 2H, H₁₆, H₁₇), 4.18 (s, 5H, H₁₈-H₂₂), 3.88 (s, 3H, H₂₅); ¹³C NMR (101 MHz, CDCl₃) δ : 188.2 (C₂), 163.3 (C₈), 145.8 (C₁), 130.7 (C₆, C₁₀), 119.1 (C₄), 113.9 (C₅), 79.6 (C₁₈-C₂₂), 71.3 (C₇, C₉), 69.9 (C₁₃, C₁₅), 69.0 (C₁₆, C₁₇), 55.6 (C₂₅); HRMS (ESI MS) m/z: theor: 347.0729 found: 347.0731 ([M+H]⁺ detected).

Synthesis of [3-(4-iodophenyl)-3-oxo-1-propen-1-yl]ferrocene (chalcone 21)


Ferrocenecarboxaldehyde (4.28 g, 20 mmol, M = 214.04 g/mol) and 4'-iodoacetophenone (4.92 g, 20 mmol, M = 246.04 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (7.78 g, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.87 – 7.83 (m, 2H, H₆, H₁₀), 7.76 (d, J = 15.3 Hz, 1H, H₅), 7.71 – 7.67 (m, 2H, H₇, H₉), 7.05 (d, J = 15.3 Hz, 1H, H₁), 4.60 (t, J = 1.8 Hz, 2H, H₁₆, H₁₇), 4.51 – 4.50 (m, 2H, H₁₃, H₁₅), 4.18 (s, 5H, H₁₈-H₂₂); ¹³C NMR (101 MHz, CDCl₃) δ : 189.0 (C₂), 147.7 (C₅), 138.1 (C₇, C₉), 137.9 (C₄), 129.9 (C₁), 118.6 (C₆, C₁₀), 100.1 (C₈), 79.1 (C₁₈-C₂₂), 71.7 (C₁₃, C₁₅), 70.0(C₁₆, C₁₇), 69.2 (C₁₄); HRMS (ESI MS) m/z: theor: 442.9590 found: 445.9588 ([M+H]⁺ detected).

Synthesis of [3-(9-anthracenyl)-1-oxo-2-propen-1-yl]ferrocene (chalcone 22)

Anthracene-9-carbaldehyde (4.12 g, 20 mmol, M = 206.24 g/mol) and acetylferrocene (4.56 g, 20 mmol, M = 228.07 g/mol) were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. The solution was stirred at room temperature overnight. During reaction, a precipitate formed. It was filtered off, washed several times with ethanol and dried under vacuum. The resulting solid was dissolved in dichloromethane and the solution was filtered on a plug of SiO₂ using dichloromethane as the eluent. The solvent was removed under reduced pressure. Dissolution in a minimum of dichloromethane followed by addition of pentane precipitated a solid that was filtered off, washed several times with pentane and dried under vacuum (7.08 g, 88% yield). ¹H NMR (CDCl₃) δ : 4.32 (s, 5H, H₁₆-H₂₁), 4.64 (t, 2H, J = 1.9 Hz, H₁₁, H₁₃), 4.95 (t, 2H, J = 1.9 Hz H₁₄, H₁₅), 7.15 (d, 1H, J = 15.9 Hz, H₂), 7.52-7.59 (m, 4H, H₂₅, H₂₆, H₂₉, H₃₀), 8.07-8.09 (m, 2H, H₂₄, H₃₁), 8.37-8.39 (m, 2H, H₂₇, H₂₈), 8.51 (s, 1H, H₇), 875 (d, 1H, J = 15.9 Hz, H₁); HRMS (ESI MS) m/z: theor: 417.0936 found: 417.0938 ([M+H]⁺ detected); HRMS (ESI MS) m/z: theor: 417.0936 found: 417.0938 ([M+H]⁺ detected); Anal. Calc. for C₂₇H₂₀FeO: C, 77.9; H, 4.8; O, 3.8; Found: C, 77.8; H, 4.9; O, 3.9 %. Analyses were consistent with those previously reported in the literature. [P. Saravanan, S. Sundaramoorthy, R. Raghunathan, Regioselective synthesis of spiroxindolopyrrolidine: a one-step cycloaddition reaction twists inherent optical and fluorescence property of ferrocene-anthracene dyad, RSC Adv., 2016, 6, 100993-100996]

Synthesis of [(1E)-3-(9-anthracenyl)-3-oxo-1-propen-1-yl]ferrocene (chalcone 23)

9-Acetylanthracene (2.57 g, 11.68 mmol, M = 220.27 g/mol) and KOH (0.65 g, 11.68 mmol, M = 56.11 g/mol) were dissolved in ethanol (20 mL) in a round bottomed flask and stirred at room temperature (r.t.) for 10 min. Ferrocenecarboxaldehyde (2.5 g, 11.68 mmol, M = 214.04 g/mol) was added and the mixture was stirred at room temperature for 24 h. The reaction was stopped by neutralizing the stirred solution with 2M HCl. A dark red precipitate after neutralization appeared. It was then removed by filtration, washed with water, some cold ethanol, and pentane. A column chromatography with ether as eluent allowed to obtain 3.27 g, 67% yield of product as solid. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H, H₈), 8.10 – 8.00 (m, 2H, H₂₄, H₃₁), 7.94 (d, J = 9.1 Hz, 2H, H₂₇, H₂₈), 7.55 – 7.43 (m, 4H, H₂₅, H₂₆, H₂₉, H₃₀), 7.04 (d, J = 15.9 Hz, 1H, H₁), 6.90 (d, J = 15.9 Hz, 1H, H₅), 4.44 (s, 2H, H₁₅, H₁₆), 4.42 (s, 2H, H₁₂, H₁₄), 4.09 (s, 5H, H₁₇-H₂₁); HRMS (ESI MS) m/z: theor: 417.0936 found: 417.0938 ([M+H]⁺ detected); Anal. Calc. for C₂₇H₂₀FeO : C, 77.9; H, 4.8; O, 3.8; Found: C, 77.8; H, 5.0; O, 4.0 %. Analyses were consistent with those reported in the literature [Y. Jung, K.-I. Son, Y.E. Oh, D.-Y. Noh, Ferrocenyl Chalcones Containing Anthracenyl Group: Synthesis, X-Ray Crystal Structures and Electrochemical Properties. Polyhedron 2008, 27, 861–867.]