```
This journal is © The Royal Society of Chemistry 2020
```


Perfluorocyclohexenyl (PFCH) Aromatic Ether Polymers from Perfluorocyclohexene and Polycyclic Aromatic Bisphenols

Ganesh Narayanan, Behzad Faradizaji, Karl M. Mukeba, Ketki E. Shelar, Maleesha DeSilva, Amanda Patrick, Bruno Donnadieu, and Dennis W. Smith., Jr.*

Department of Chemistry and The Marvin B. Dow Advanced Composites Institute, Mississippi State University, Starkville, MS 39759, USA.

* To whom correspondence should be addressed:

Dennis W. Smith, Jr., Ph.D.
Department of Chemistry, Mississippi State University, MS-39762, Email: dsmith@chemistry.msstate.edu, Ph: +1-662-325-7813

Table of Contents

General Experimental Methods 5
Materials Characterization. 6
Synthesis of 2-bis(4-hydroxyphenyl)acenaphthene-1-(2H)-one (M1). 9
Synthesis of 4,4'-(1,2-acenaphthylenediyl)bisphenol (M2) 10
Synthesis of 4,4'-(phenanthrene-9,10-diyl)diphenol (M4). 12
Monomer Characterization: 13
Crystal data for M2 15
Crystal data for M4 15
Figure A1. ORTEP representation of $\mathbf{M 2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2}\right)$ and $\mathbf{M 4}$ 16
Table 1. Bond lengths (\AA) for M2. 17
Table 2. Bond angles $\left({ }^{\circ}\right)$ for M2. 19
Table 3. Bond lengths (\AA) for M4. 20
Table 4. Bond angles $\left({ }^{\circ}\right)$ for M4. 22
General procedure for synthesis of homopolymers P1-P4 26
Synthesis of homopolymer P2 28
Synthesis of homopolymer P4. 29
Synthesis of homopolymer P5. 30
Figure S1. Fourier Transform Infrared (FT-IR) spectroscopic analyses of bisphenol M1-M4. 32
Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{M 1}$ in $\mathrm{CD}_{3} \mathrm{OD}$ 33
Figure S3. Heteronuclear multiple bond correlation (HMBC) spectroscopy and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of M1 in $\mathrm{CD}_{3} \mathrm{OD}$. 3435
Figure $\mathrm{S} 4 .{ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{M 1}$ in $\mathrm{CD}_{3} \mathrm{OD}$. 35
Figure S5. Heteronuclear single quantum coherence (HSQC) spectra of $\mathbf{M 1}$ in $\mathrm{CD}_{3} \mathrm{OD}$. 36
Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{M 2}$ in $\mathrm{CD}_{3} \mathrm{OD}$. 37
Figure $\mathrm{S} 7 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{M} \mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}$ 38
Figure S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{M 3}$ in $\mathrm{CD}_{3} \mathrm{OD}$. 39
Figure S9. NOESY spectra of M3 in $\mathrm{CD}_{3} \mathrm{OD}$ 40
Figure S10. ${ }^{13} \mathrm{C}$ - NMR spectra of $\mathbf{M 3}$ in $\mathrm{CD}_{3} \mathrm{OD}$. 41
Figure S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of M 4 in $\mathrm{CD}_{3} \mathrm{OH}$. 42
Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of M 4 in $\mathrm{CD}_{3} \mathrm{OD}$ 43
Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{M 4}$ in DMSO- d_{6} 44
Figure S14. NOESY NMR spectra of M4 in DMSO- d_{6}. 45
Figure $\mathrm{S} 15 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of M 4 in $\mathrm{CD}_{3} \mathrm{OD}$ 46
Figure S16. Heteronuclear single quantum coherence (HSQC) spectra of M4 in DMSO- d_{6}. 47
Figure S17. High resolution mass spectrometric analyses of M1 48
Figure S18. High resolution mass spectrometric analyses of M2 49
Figure S19. High resolution mass spectrometric analyses of M3. 50
Figure S20. High resolution mass spectrometric analyses of M4. 51
Figure S21. Fourier transform infrared analyses of P1-P4 between the wavelengths 2000 and $400 \mathrm{~cm}^{-}$
15253
Figure S22. Fourier Transform Infrared analyses of polymers P5-P6 between the wavelengths 2000$400 \mathrm{~cm}^{-1}$.53
Figure $\mathrm{S} 23 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{P} 1$ in CDCl_{3} 54
Figure S24. ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{P} 1$ in CDCl_{3}. 55
Figure $\mathrm{S} 25 .{ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{P} 1$ in CDCl_{3} 56
Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra of $\mathbf{P 2}$ in CDCl_{3} 57
Figure S27. ${ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{P} 2$ in CDCl_{3} 58
Figure S28. ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{P} 2$ in CDCl_{3}. 59
Figure S29. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{P 3}$ in CDCl_{3} 60
Figure S30. ${ }^{19} \mathrm{~F}$-NMR Spectra of $\mathbf{P 3}$ in CDCl_{3}. 61
Figure $\mathrm{S} 31 .{ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{P} 3$ in CDCl_{3}. 62
Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{P} 4$ in CDCl_{3}. 63
Figure S33. ${ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{P} 4$ in CDCl_{3} 64
Figure $\mathrm{S} 34 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{P 4}$ in CDCl_{3} 65
Figure S35. ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{P 5}$ in CDCl_{3} 66
Figure S36. ${ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{P 5}$ in CDCl_{3}. 67
Figure S37. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{P 6}$ in CDCl_{3} 68
Figure $\mathrm{S} 38 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{P} 6$ in CDCl_{3}. 69
Figure $\mathrm{S} 39 .{ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{P} 6$ in CDCl_{3} 70
References 71

General Experimental Methods.
All the reactions were carried out in oven-dried $\left(120^{\circ} \mathrm{C}\right)$ glassware under argon atmosphere, unless otherwise stated. Acenapthenequinone (cat\#102191000), triethylsilane (cat\#AO362371), trifluoromethanesulfonic acid (cat\#A0355787) were purchased from Acros organics, NJ, USA, and phenanthrene-9,10-dione(cat\#23173), tetrahydrofuran (THF) (cat\#0099898), trifluoroacetic acid (cat\#001271), methanesulfonic acid (cat\#152800) were purchased from Oakwood chemicals, SC, USA. Other reagents utilized in this study: chloroform (cat \# C2432), 1dodecanethiol (cat\#08225AD), N, N-dimethylformamide (DMF) (cat \# 227056), toluene (cat\#179418), triethylamine (cat\#A0393087) were purchased from Sigma-Aldrich, St. Louis, MO, USA. The remainder of the chemicals, dichloromethane, hexanes (cat\#H292-20), methanol (cat\#A456-4), phenol (cat\#A92-500), acetonitrile (cat\# A955-4)), were obtained from Fisher Scientific, NH, USA. Finally, fluoro-olefin monomer, decafluorocyclohexene (cat\# 1400-2-10), was obtained from Synquest labs, FL, USA. De-ionized water (bulk resistivity of $14 \mathrm{~m} \Omega \mathrm{~cm}$) was obtained from in-house water purification system based on a reverse osmosis process.

Materials Characterization.
Fourier Transform Infrared Spectroscopy (FTIR) experiments were conducted using an Agilent Cary 630 spectrophotometer with a diamond crystal ATR sample head between the wavelengths 4000 to $400 \mathrm{~cm}^{-1}$. The experiments were carried at a resolution of $2 \mathrm{~cm}^{-1}$, and one hundred twenty-eight scans were carried out for each sample.

Nuclear magnetic resonance (NMR) experiments (${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$, NOESY, HSQC, HBMC $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$) were measured on a Bruker AVANCE III 500 and 300 MHz instrument. For as-synthesized bisphenols, methanol- d_{4} $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$, and DMSO- d_{6} were used as solvent. Similarly, for polymers (homo- and copolymers) (P1-P6), chloroform-d $\left(\mathrm{CDCl}_{3}\right)$ was used as a solvent for NMR experiments, and all chemical shifts are reported in parts per million ($\delta \mathrm{ppm}$).

High resolution mass spectrometric (HR-MS) experiments were carried out on a Bruker UHPLC microTOF-Q II HR-MS via injection and ionization of monomers (M1-M4 in methanol) using atmospheric pressure chemical ionization (APCI) technique. The data was obtained within mass accuracies of 1-10 ppm RMS error and at resolution greater than 17500 full width at height maximum (FWHM).

Single crystal X-ray diffraction data of M2 and M4 with approximate dimensions of $0.131 \times 0.168 \times 0.299 \mathrm{~mm}^{3}$ (M2) and $0.086 \times 0.203 \times 0.510$ (M4), respectively, were obtained from a Bruker AXS D8 Venture equipped with a Photon 100 CMOS active pixel sensor detector using copper monochromatized X-ray radiation ($\lambda=1.54178 \AA$). The
data were processed by integrating the frames with the aid of the Bruker SAINT software using a narrow-frame algorithm and absorption-induced effects were corrected using a multi-scan method implemented in the SADABS program. The ratio of minimum to maximum apparent transmission for $\mathbf{M 2}$ was 0.867 . The calculated minimum and maximum transmission coefficients (based on crystal size) were 0.8310 and 0.9210 . On the other hand, the ratio of minimum to maximum for M4 was 0.810 and calculated minimum and maximum transmission coefficients (based on crystal size) were 0.7300 and 0.9460 . The structures of M2 and M4 were solved and refined using the Bruker SHELXT- Software Package, using the space group P-1, with $\mathrm{Z}=2$ for the formula unit, $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2}$ (M2) and $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}$ (M4). Refinement of the structure M2 was carried out by least squares procedures on weighted F^{2} values using the SHELXL-2016/6 included in the APEX3 v2018, 1.0, AXS Bruker program. Hydrogen atoms, which were localized on difference Fourier maps were then introduced in the refinement as fixed contributors in idealized geometry with an isotropic thermal parameter fixed at 20% higher than the carbons atoms they were connected. In M4, the asymmetric unit was built with two independent molecules labelled: A and B. Refinement of the structure M4 as mentioned above for M2.

Differential scanning calorimetric (DSC) experiments were conducted to study the thermal order-disorder events of the homo- and co-polymers using a TA Q20 V4. DSC instrument. Approximately, 3 to 5 mg of the polymer was placed in TA low-mass aluminum pan, sealed, and a heat-cool-heat cycle (4 heating and 4 cooling cycles) was employed between the temperatures of $0-300^{\circ} \mathrm{C}$ at a scanning rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. Between the cycles, the pans were
isothermally held at $300^{\circ} \mathrm{C}$ and at $0^{\circ} \mathrm{C}$ for 3 mins . The raw data was extracted using TA universal analysis software V4.5a. For clarity, the data were standardized using Minitab® 18, and the plots were created using OriginPro 2018.

Thermal degradation patterns of the polymers were carried out on small samples (5 to 10 mg) using a TA Q50 V20 Thermogravimetric analyzer (TGA) instrument over the temperature range $30-800^{\circ} \mathrm{C}$, at a heating rate of 10 ${ }^{\circ} \mathrm{C} / \mathrm{min}$. The experiments were carried out under both nitrogen and air, and TA universal analyses software was used to analyze the degradation patterns, and the data was exported for further processing using OriginPro 2018.

Molecular weight measurements based on gel permeation chromatography (GPC) data were collected using a TOSOH EcoSEC HLC-8320 gel permeation chromatograph at $30^{\circ} \mathrm{C}$, equipped with TSK gel super H -RC columns (6 mm internal diameter, 15 cm long, particle size $4 \mu \mathrm{~m}$). HPLC grade tetrahydrofuran (THF) was used an eluting solvent at a flow rate of $0.7 \mathrm{~mL} / \mathrm{min}$. The molecular weights $\left(M_{n}, M_{w}\right.$, and $\left.M_{z}\right)$ were obtained by calibrating against polystyrene standards based on the retention times monitored by UV detector ($\lambda=254 \mathrm{~nm}$).

Synthesis of 2one (M1).

$8 \quad \mathbf{M 1}$
bis(4-hydroxyphenyl)acenaphthene-1-(2H)-

Compound M1 was synthesized based on a previously reported protocol with modifications ${ }^{51}$. To a mixture of acenaphthoquinone ($3.00 \mathrm{~g}, 16.5 \mathrm{mmol}$), phenol $(9.29 \mathrm{~g}, 98.7 \mathrm{mmol})$, and 2 mL of 1-dodecanethiol was added 50 mL dichloroethane in a 250 mL round-bottom flask, equipped with magnetic stir bar, and fitted with condenser and rubber septa. 2 ml of methanesulfonic acid was added under argon atmosphere. The reaction mixture was stirred under reflux condition for 3 h before it was allowed to cool to rt. The precipitate was subsequently filtered and washed with dichloromethane $(3 \times 100 \mathrm{~mL})$ and water $(2 \times 100 \mathrm{~mL})$, and air-dried for 8 h to give $\mathbf{M 1}(5.11 \mathrm{~g}, 14.5 \mathrm{mmol}, 88 \%$ yield) as a white solid: $\mathrm{mp} 263.28^{\circ} \mathrm{C}$; IR $3600-3000,1694,1592,1506,1431,1368,1216,1176,1112,1003,815$, $783,640,545,519$, and $490 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$, $\delta 8.22(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})$, $7.90(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{dd}, J=7.9,7.0 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{dd}, J=8.5,7.0 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 7.00$ $(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.67(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz},\right) \delta 207.0,157.7,145.4,142.3,135.1$, 133.4, 130.9, 129.9, 124.0, 123.6, 116.2, 67.8; HRMS (ACPI) m/z: [M] Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{3} 352.1099$; Found 352.1087

Synthesis of 4,4'-
(1,2-acenaphthylenediyl)bisphenol (M2).

M2

In a 50 mL round-bottom flask, $0.35 \mathrm{~g}(0.99 \mathrm{mmol})$ of 2-bis(4-hydroxyphenyl)acenaphthene-1-(2 H)-one ($\mathbf{M} 1$), phenol $0.73 \mathrm{~g}(7.8 \mathrm{mmol})$, 1-dodecanethiol $0.085 \mathrm{~g}(0.42 \mathrm{mmol})$ were added and equipped with magnetic stir bar, and fitted rubber septa. The flask was flushed with argon for 5 min and the mixture heated at $80^{\circ} \mathrm{C}$ under stirring. Then, 2 mL of triflic acid was added via syringe and stirred for 8 hours at $80^{\circ} \mathrm{C}$. After 8 h of reaction, the mixture was cooled to rt and subsequently diluted with distilled water $(100 \mathrm{~mL})$. The reaction mixture was extracted by ethyl acetate (3×50 $\mathrm{mL})$. The combined organic layer was washed with distilled water $(2 \times 50 \mathrm{~mL})$. The organic layer was dried over sodium sulfate and concentrated in vacuo. The residue was further purified by column chromatography (silica gel/ toluene: ethyl acetate $=1: 12$ to $1: 8)$ and recrystallized from dichloromethane to produce $\mathbf{M 2}(140 \mathrm{mg}, 0.42 \mathrm{mmol}$, 42% yield) as a orange solid: $\mathrm{mp} 252.51^{\circ} \mathrm{C}$; IR: $3480-3040,1594,1546,1472,1426,1363,1216,1098,1011,820$, $749,688,579,504$, and cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$, $) ~ \delta 7.79(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$), $7.62(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$, $7.54(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.24(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.80(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right.$, $\delta 158.0$, 141.9, 138.2, 132.4, 129.9, 128.90, 128.89, 128.1, 127.9, 124.3, 116.4; HRMS (ACPI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2}$ 336.1150; Found 336.1160
.Synthesis ${ }^{\text {OH }}$ of 10,10-bis(4-hydroxyphenyl)phenanthren-

Compound M3 was synthesized based on a previously reported procedure for synthesizing compound M1. To a mixture of phenanthrene-9, 10 , dione ($10.0 \mathrm{~g}, 48.0 \mathrm{mmol}$), phenol ($27.08 \mathrm{~g}, 287.7 \mathrm{mmol}$), and 2 mL of 1-dodecanethiol was added 250 mL dichloroethane in a 1 L round-bottom flask, equipped with magnetic stir bar, and fitted with condenser and rubber septa. 3 ml of methanesulfonic acid was added under argon atmosphere. The reaction mixture was stirred under reflux condition for 3 h resulting in the precipitation of $\mathbf{M} \mathbf{3}$ before it was allowed to cool to rt. The precipitate was subsequently filtered and washed with dichloromethane $(5 \times 100 \mathrm{~mL})$ and water $(4 \times 100 \mathrm{~mL})$, and air-dried for 8 h to give M3 ($15.62 \mathrm{~g}, 41.3 \mathrm{mmol}, 86 \%$ yield) as a white solid: mp $262.51^{\circ} \mathrm{C}$; IR $3515-3270,1663$, $1589,1504,1437,1357,1298,1227,1175,1114,1013,870,825,772,734,669,637,599,569$, and $519 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$, $\delta 8.10(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.62(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz})$, 6.72-6.67 (4 H, m), 6.67-6.59 (4 H, m); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$, $\delta 203.0,157.9,143.3,138.2,135.5,134.0$,
133.0, 132.8, 132.5, 131.8, 129.7, 129.5, 129.1, 128.8, 125.5, 124.3, 115.9, 68.6; HRMS (ESI/Q-TOF) m/z: [MH] ${ }^{+}$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{3} 379.1334$; Found 379.1328.

Synthesis of 4,4'-(phenanthrene-9,10-diyl)diphenol (M4).

To a 100 mL round-bottom flask were added $\mathbf{M 3}(10.0 \mathrm{~g}, 26.43 \mathrm{mmol}), 50 \mathrm{~mL}$ of trifluoroacetic acid, and triethylsilane ($3.69 \mathrm{~g}, 31.72 \mathrm{mmol}$). The flask was equipped with magnetic stir bar, fitted with condenser and rubber septa, and flushed with argon. The reaction mixture was stirred at reflux for 12 h before it was cooled to rt. The precipitate was filtered and washed with dichloromethane ($3 \times 50 \mathrm{~mL}$) , and air-dried for 2 h to give $\mathbf{M 4}(7.86 \mathrm{~g}, 21.7 \mathrm{mmol}, 82 \%$ yield) as a white solid: $\mathrm{mp} 311.59^{\circ} \mathrm{C}$; IR $3640-3086,1701,1654,1609,1507,1487,1420,1355,1206,1101,1045$, $1015,886,854,812,758,724,625,585,546,509$, and $426 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$, $\delta 8.82(2 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.93(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.69(4$ H, d, $J=8.5 \mathrm{~Hz}$); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$, $\delta 9.33(2 \mathrm{H}, \mathrm{s}), 8.91(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \mathrm{ddd}, J=8.2$, $6.9,1.4 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{td}, J=8.0,0.6 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}), 6.91(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.67(4 \mathrm{H}, \mathrm{d}, J=$
$8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz},\right) \delta 157.0,138.8,133.9,133.4,132.5,131.5,128.9,127.6,127.4,123.7,115.7$;
HRMS (ACPI) m/z: (M)+ Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{2} 363.1385$; Found 363.1391

Monomer Characterization: Despite their similarity in terms of di-substitution on PAH, key differences in terms of bond lengths, dihedral angles between phenol and acenaphthene/phenanthrene moieties were observed. For example, bond length between the oxygens pertaining to the phenols were 8.61 and $6.75 \AA$ for M2 and M4, respectively. Such large distances between the oxygens (and therefore hydroxyl groups) is expected to facilitate intermolecular polymerization over intramolecular condensation between DFCH and M2 or M4. This was further substantiated by the larger θ angle between the two phenolic groups present in M2 $\left(79^{\circ}\right)$ compared to 56° in M4 (Figure 1). Conversely, in the crystal lattice planes, lower dihedral angles were observed between the phenol and acenaphthene (40°) in M2 compared to phenol and phenanthrenes (65°) in M4. Interestingly, these values, in particular in M4, were substantially higher compared with linear bisphenols such as biphenol or bisphenol-A (36°).

FTIR analyses of monomers M1-M2 (Figure S1) revealed several characteristic bands at ~ 3290, 1592 (also 1426 and 1368), 1265 (and 1100), corresponding to the presence of $\mathrm{O}-\mathrm{H}$ vibration, $\mathrm{C}=\mathrm{C}$ stretching vibration, $\mathrm{C}-\mathrm{O}$ vibration (also C-H deformation vibration), respectively. Despite the significant overlap in the characteristic bands, presence of characteristic band in M1 at $1694 \mathrm{~cm}-1$ ($\mathrm{C}=\mathrm{O}$ stretching vibration) provided evidence for the partial/complete retention of diketone in M1. Similarly, in M3 and M4 (Figure S1), several common characteristic bands were observed at 3500-

3100, 1589 (also 1504 and 1437), 1220, attributed to the broad $\mathrm{O}-\mathrm{H}$ vibration, $\mathrm{C}=\mathrm{C}$ stretching vibration, $\mathrm{C}-\mathrm{O}$ stretching (also C-H vibration), respectively. Just like M1, characteristic band at $1663 \mathrm{~cm}-1$ was observed in M3 (and absent in M4) indicating the presence of characteristic $\mathrm{C}=\mathrm{O}$ from the diketone (starting material).

These results were also in agreement with 13C-NMR experiments that showed presence of carbonyl signals at ~ 205 ppm in case of M1 (Figure S4) and M3 (Figure S10) that were absent in M2 and M4. As both FTIR and 13C-NMR did not demonstrate mono-or di-substitution of ketones, 1H-NMR and 2D-NMR experiments were carried out to elucidate the chemical structures. 1H-NMR (in methanol-d6) of M1 (Figure S2) showed six doublets (d) and two doublets of doublet (dd) signals at $8.22,7.98,7.90,7.42,6.7$, and 7.0 , and; 7.8 , and 7.67 , respectively. On the other hand, 1H-NMR of M2 (Figure S6) showed three d and one dd signals at 7.78, 7.24, and 6.8; and, 7.56, respectively, with the differences between M1 and M2, attributed to the differences in the symmetry (Cs vs C2v). Heteronuclear multiple bond correlation (HMBC) spectroscopic experiment (Figure S3) was used to fully assign the protons on M1. HMBC experiment showed the correlation between carbonyl group (205 ppm) on M1 and the two protons (Ha and Hb at 7.98 and 7.8 ppm, respectively) present in the naphthalene moiety, indicating mono-substitution in the acenaphthoquinone. In addition, heteronuclear single quantum correlation spectroscopic (HSQC) experiment was carried out on M1 (Figure S5) to partially assign the carbons, except the quaternary carbons present in M1. The differences in the chemical structures of M3 and M4 were similarly elucidated by 1 H - and nuclear overhauser effect (NOESY)-NMR experiments. Like M1, 1H-NMR of M3 (Figure S8) showed multiple d and dd signals, with these signals significantly decreasing in M4 (Figure S11), due to the enhanced symmetry in M4. In addition, NOESY
experiments were carried out on M3 and M4 to fully assign the protons present in both M3 and M4 (Figures S9 and S14).

Crystal data for M2: $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2}$, the integration of the data based on a triclinic unit cell yielded a total of 11378 reflections to a maximum θ angle of $58.89^{\circ}(0.90 \AA$ resolution), of which 2323 were independent (average redundancy 4.898 , completeness $=93.7 \%, \operatorname{Rint}=3.90 \%, \operatorname{Rsig}=3.64 \%)$ and $2084(89.71 \%)$ were greater than $2 \sigma(\mathrm{~F} 2)$. The final cell constants of $\mathrm{a}=9.0533(5) \AA, \mathrm{b}=9.3686(5) \AA, \mathrm{c}=10.9877(6) \AA, \alpha=102.680(2)^{\circ}, \beta=106.275(2)^{\circ}, \gamma=93.165(3)$ ${ }^{\circ}$, volume $=865.97(8) \AA 3$, are based upon the refinement of the XYZ-centroids of 305 reflections above 20σ (I) with $8.636<2 \theta<51.36^{\circ}$.

Crystal data for M4: $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}$, the integration of the data based on a triclinic unit cell yielded a total of 75362 reflections to a maximum θ angle of $72.61^{\circ}(0.81 \AA$ resolution), of which 8842 were independent (average redundancy 8.523 , completeness $=97.9 \%, \operatorname{Rint}=4.61 \%, \mathrm{Rsig}=2.95 \%)$ and $7699(87.07 \%)$ were greater than $2 \sigma(\mathrm{~F} 2)$. Based on the refinement of the XYZ-centroids of 4031 reflections above 20σ (I) with $7.117^{\circ}<2 \theta<145.0^{\circ}$, final cell constants of $\mathrm{a}=9.7233(4) \AA, \mathrm{b}=10.5056(5) \AA, \mathrm{c}=25.1367(11) \AA, \alpha=85.381(2)^{\circ}, \beta=81.238(2)^{\circ}, \gamma=64.053(2)^{\circ}$, volume $=$ 2281.64(18) $\AA 3$, were obtained.

Figure A1. ORTEP representation of $\mathbf{M 2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2}\right)$ and $\mathbf{M 4}\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4}\right)$. This representation incorporates the atom labeling scheme for the independent non-hydrogen atoms. The thermal ellipsoids are scaled to enclose 50% probability.

Table 1. Bond lengths (\AA) for M2.
O1-C16 1.387(5) O1-H1 0.82
O2-C22 $1.367(5) \quad$ O2-H2 0.82

C1-C12	$1.376(5)$	C1-C19	$1.467(5)$
C1-C2	$1.485(5)$	C2-C3	$1.369(6)$
C2-C11	$1.409(6)$	C3-C4	$1.413(6)$
C3-H3	0.93	C4-C5	$1.363(7)$
C4-H4	0.93	C5-C6	$1.420(7)$
C5-H5	0.93	C6-C11	$1.385(6)$
C6-C7	$1.420(7)$	C7-C8	$1.366(7)$
C7-H7	0.93	C8-C9	$1.410(6)$
C8-H8	0.93	C9-C10	$1.372(6)$
C9-H9	0.93	C10-C11	$1.408(5)$
C10-C12	$1.475(5)$	C12-C13	$1.476(5)$
C13-C18	$1.386(6)$	C13-C14	$1.398(5)$

```
C14-C15 1.377(6) C14-H14 0.93
C15-C16 1.370(7) C15-H15 0.93
C16-C17 1.389(6) C17-C18 1.375(6)
C17-H17 0.93 C18-H18 0.93
C19-C20 1.393(6) C19-C24 1.396(6)
C20-C21 1.377(6) C20-H20 0.93
C21-C22 1.389(6) C21-H21 0.93
C22-C23 1.372(6) C23-C24 1.386(6)
C23-H23 0.93 C24-H24 0.93
```

Table 2. Bond angles $\left({ }^{\circ}\right)$ for M2.

C16-O1-H1	109.5	C22-O2-H2	109.5
C12-C1-C19	$128.4(3)$	C12-C1-C2	$108.4(3)$

C19-C1-C2	$123.0(3)$	C3-C2-C11	$118.2(4)$
C3-C2-C1	$135.5(4)$	C11-C2-C1	$106.2(3)$
C2-C3-C4	$118.3(4)$	C2-C3-H3	120.9
C4-C3-H3	120.9	C5-C4-C3	$123.0(4)$
C5-C4-H4	118.5	C3-C4-H4	118.5
C4-C5-C6	$120.2(4)$	C4-C5-H5	119.9
C6-C5-H5	119.9	C11-C6-C7	$115.8(4)$
C11-C6-C5	$115.6(4)$	C7-C6-C5	$128.7(4)$
C8-C7-C6	$119.9(4)$	C8-C7-H7	120.0
C6-C7-H7	120.0	C7-C8-C9	$123.0(4)$
C7-C8-H8	118.5	C9-C8-H8	118.5
C10-C9-C8	$118.6(4)$	C10-C9-H9	120.7
C8-C9-H9	120.7	C9-C10-C11	$117.9(4)$
C9-C10-C12	$135.5(4)$	C11-C10-C12	$106.7(3)$
C6-C11-C10	$124.9(4)$	C6-C11-C2	$124.8(4)$
C10-C11-C2	$110.3(4)$	C1-C12-C10	$108.5(3)$
C1-C12-C13	$127.5(3)$	C10-C12-C13	$124.0(3)$

```
C18-C13-C14 117.7(4) C18-C13-C12 122.3(3)
C14-C13-C12 120.0(4) C15-C14-C13 121.0(4)
C15-C14-H14 119.5 C13-C14-H14 119.5
C16-C15-C14 119.9(4) C16-C15-H15 120.0
C14-C15-H15 120.0 C15-C16-O1 118.1(4)
C15-C16-C17 120.5(4) O1-C16-C17 121.4(4)
C18-C17-C16 119.1(4) C18-C17-H17 120.5
C16-C17-H17 120.5 C17-C18-C13 121.8(4)
C17-C18-H18 119.1 C13-C18-H18 119.1
C20-C19-C24 117.0(4) C20-C19-C1 122.0(3)
C24-C19-C1 121.0(3) C21-C20-C19 121.9(4)
C21-C20-H20 119.1 C19-C20-H20 119.1
C20-C21-C22 119.8(4) C20-C21-H21 120.1
C22-C21-H21 120.1 O2-C22-C23 117.6(4)
O2-C22-C21 122.8(4) C23-C22-C21 119.7(4)
C22-C23-C24 120.1(4) C22-C23-H23 119.9
C24-C23-H23 119.9 C23-C24-C19 121.5(4)
```

```
C23-C24-H24 119.3 C19-C24-H24 119.3
```

Table 3. Bond lengths (\AA) for M4.

O1A-C1A	$1.3724(16)$	O1A-H1A	0.8401
O2A-C22A	$1.3759(15)$	O2A-H2A	0.84
C1A-C2A	$1.388(2)$	C1A-C26A	$1.3899(19)$
C2A-C3A	$1.381(2)$	C2A-H2A1	0.95
C3A-C4A	$1.3961(19)$	C3A-H3A	0.95
C4A-C25A	$1.3920(19)$	C4A-C5A	$1.4930(18)$
C5A-C18A	$1.3646(19)$	C5A-C6A	$1.4529(18)$
C6A-C7A	$1.410(2)$	C6A-C11A	$1.418(2)$
C7A-C8A	$1.374(2)$	C7A-H7A	0.95
C8A-C9A	$1.394(2)$	C8A-H8A	0.95
C9A-C10A	$1.370(2)$	C9A-H9A	0.95
C10A-C11A	$1.4163(19)$	C10A-H10A	0.95
C11A-C12A	$1.449(2)$	C12A-C13A	$1.415(2)$
C12A-C17A	$1.4194(19)$	C13A-C14A	$1.365(2)$
C13A-H13A	0.95	C14A-C15A	$1.401(2)$
C14A-H14A	0.95	C15A-C16A	$1.373(2)$
C15A-H15A	0.95	C16A-C17A	$1.412(2)$
C16A-H16A	0.95	C17A-C18A	$1.4525(18)$
C18A-C19A	$1.4968(18)$	C19A-C24A	$1.3921(18)$
C19A-C20A	$1.3979(18)$	C20A-C21A	$1.3858(19)$
C20A-H20A	0.95	C21A-C22A	$1.3872(18)$

C21A-H21A	0.95	C22A-C23A	1.3860(18)
C23A-C24A	$1.3892(18)$	C23A-H23A	0.95
C24A-H24A	0.95	C25A-C26A	1.3848(19)
C25A-H25A	0.95	C26A-H26A	0.95
O1B-C1B	1.3790 (15)	O1B-H1B	0.87(2)
O2B-C22B	$1.3758(16)$	O2B-H2B	0.90(2)
C1B-C26B	1.3861(18)	C1B-C2B	1.3871(18)
C2B-C3B	1.3872(18)	C2B-H2B1	0.95
C3B-C4B	1.3957(18)	C3B-H3B	0.95
C4B-C25B	1.3911(17)	C4B-C5B	1.4964(17)
C5B-C18B	1.3660(19)	C5B-C6B	1.4498(18)
C6B-C11B	1.4162(18)	C6B-C7B	1.4172(19)
C7B-C8B	1.373(2)	C7B-H7B	0.95
C8B-C9B	1.401(2)	C8B-H8B	0.95
C9B-C10B	1.367(2)	C9B-H9B	0.95
C10B-C11B	1.4155(19)	C10B-H10B	0.95
C11B-C12B	1.452(2)	C12B-C13B	$1.4156(19)$
C12B-C17B	$1.4213(19)$	C13B-C14B	1.372(2)
C13B-H13B	0.95	C14B-C15B	$1.395(2)$
C14B-H14B	0.95	C15B-C16B	$1.377(2)$
C15B-H15B	0.95	C16B-C17B	1.411(2)
C16B-H16B	0.95	C17B-C18B	1.4539(18)
C18B-C19B	1.4964(18)	C19B-C24B	1.3914(18)
C19B-C20B	1.3962(18)	C20B-C21B	1.3870(19)
C20B-H20B	0.95	C21B-C22B	1.3847(19)
C21B-H21B	0.95	C22B-C23B	1.3899(18)
C23B-C24B	1.3839(19)	C23B-H23B	0.95
C24B-H24B	0.95	C25B-C26B	1.3896(18)

C25B-H25B	0.95	C26B-H26B	0.95
O1S-C1S	$1.4181(19)$	O1S-H1S	$0.85(2)$
C1S-H1S1	0.98	C1S-H1S2	0.98
C1S-H1S3	0.98	O2S-C2S	$1.406(2)$
O2S-H2S	$0.83(2)$	C2S-H2S1	0.98
C2S-H2S2	0.98	C2S-H2S3	0.98
O3S-C3S	$1.4142(19)$	O3S-H3S	$0.89(2)$
C3S-H3S1	0.98	C3S-H3S2	0.98
C3S-H3S3	0.98	O4S-C4S	$1.4300(19)$
O4S-H4S	$0.85(2)$	C4S-H4S1	0.98
C4S-H4S2	0.98	C4S-H4S3	0.98

Table 4. Bond angles $\left(^{\circ}\right)$ for M4.

C1A-O1A-H1A	109.5	C22A-O2A-H2A	109.5
O1A-C1A-C2A	$118.38(12)$	O1A-C1A-C26A	$121.59(13)$
C2A-C1A-C26A	$120.03(13)$	C3A-C2A-C1A	$119.56(12)$
C3A-C2A-H2A1	120.2	C1A-C2A-H2A1	120.2
C2A-C3A-C4A	$121.52(13)$	C2A-C3A-H3A	119.2
C4A-C3A-H3A	119.2	C25A-C4A-C3A	$117.91(12)$
C25A-C4A-C5A	$120.67(12)$	C3A-C4A-C5A	$121.42(12)$
C18A-C5A-C6A	$120.61(12)$	C18A-C5A-C4A	$120.61(12)$
C6A-C5A-C4A	$118.75(12)$	C7A-C6A-C11A	$118.94(13)$
C7A-C6A-C5A	$121.24(13)$	C11A-C6A-C5A	$119.81(13)$
C8A-C7A-C6A	$121.47(15)$	C8A-C7A-H7A	119.3
C6A-C7A-H7A	119.3	C7A-C8A-C9A	$119.68(15)$

C7A-C8A-H8A	120.2	C9A-C8A-H8A	120.2
C10A-C9A-C8A	$120.30(14)$	C10A-C9A-H9A	119.8
C8A-C9A-H9A	119.8	C9A-C10A-C11A	$121.58(15)$
C9A-C10A-H10A	119.2	C11A-C10A-H10A	119.2
C10A-C11A-C6A	$118.00(14)$	C10A-C11A-C12A	$122.44(13)$
C6A-C11A-C12A	$119.55(12)$	C13A-C12A-C17A	$117.84(13)$
C13A-C12A-C11A	$122.69(13)$	C17A-C12A-C11A	$119.46(12)$
C14A-C13A-C12A	$121.88(14)$	C14A-C13A-H13A	119.1
C12A-C13A-H13A	119.1	C13A-C14A-C15A	$120.22(14)$
C13A-C14A-H14A	119.9	C15A-C14A-H14A	119.9
C16A-C15A-C14A	$119.58(14)$	C16A-C15A-H15A	120.2
C14A-C15A-H15A	120.2	C15A-C16A-C17A	$121.45(14)$
C15A-C16A-H16A	119.3	C17A-C16A-H16A	119.3
C16A-C17A-C12A	$119.03(12)$	C16A-C17A-C18A	$121.19(12)$
C12A-C17A-C18A	$119.78(12)$	C5A-C18A-C17A	$120.75(12)$
C5A-C18A-C19A	$120.21(12)$	C17A-C18A-C19A	$119.02(12)$
C24A-C19A-C20A	$118.28(12)$	C24A-C19A-C18A	$120.59(11)$
C20A-C19A-C18A	$121.10(11)$	C21A-C20A-C19A	$121.25(12)$
C21A-C20A-H20A	119.4	C19A-C20A-H20A	119.4
C20A-C21A-C22A	$119.45(12)$	C20A-C21A-H21A	120.3
C22A-C21A-H21A	120.3	O2A-C22A-C23A	$117.32(11)$
O2A-C22A-C21A	$122.41(12)$	C23A-C22A-C21A	$120.27(12)$
C22A-C23A-C24A	$119.85(12)$	C22A-C23A-H23A	120.1
C24A-C23A-H23A	120.1	C23A-C24A-C19A	$120.86(12)$
C23A-C24A-H24A	119.6	C19A-C24A-H24A	119.6
C26A-C25A-C4A	$121.29(12)$	C26A-C25A-H25A	119.4
C4A-C25A-H25A	119.4	C25A-C26A-C1A	$119.68(13)$
C25A-C26A-H26A	120.2	C1A-C26A-H26A	120.2

C1B-O1B-H1B	$108.6(14)$	C22B-O2B-H2B	$111.7(14)$
O1B-C1B-C26B	$121.56(11)$	O1B-C1B-C2B	$117.95(11)$
C26B-C1B-C2B	$120.48(12)$	C1B-C2B-C3B	$119.26(12)$
C1B-C2B-H2B1	120.4	C3B-C2B-H2B1	120.4
C2B-C3B-C4B	$121.27(12)$	C2B-C3B-H3B	119.4
C4B-C3B-H3B	119.4	C25B-C4B-C3B	$118.41(12)$
C25B-C4B-C5B	$120.60(11)$	C3B-C4B-C5B	$120.95(11)$
C18B-C5B-C6B	$120.64(12)$	C18B-C5B-C4B	$120.22(12)$
C6B-C5B-C4B	$119.14(11)$	C11B-C6B-C7B	$118.92(12)$
C11B-C6B-C5B	$120.08(12)$	C7B-C6B-C5B	$120.99(12)$
C8B-C7B-C6B	$121.37(13)$	C8B-C7B-H7B	119.3
C6B-C7B-H7B	119.3	C7B-C8B-C9B	$119.61(14)$
C7B-C8B-H8B	120.2	C9B-C8B-H8B	120.2
C10B-C9B-C8B	$120.24(13)$	C10B-C9B-H9B	119.9
C8B-C9B-H9B	119.9	C9B-C10B-C11B	$121.76(13)$
C9B-C10B-H10B	119.1	C11B-C10B-H10B	119.1
C10B-C11B-C6B	$118.09(13)$	C10B-C11B-C12B	$122.49(12)$
C6B-C11B-C12B	$119.42(12)$	C13B-C12B-C17B	$118.19(13)$
C13B-C12B-C11B	$122.37(13)$	C17B-C12B-C11B	$119.44(12)$
C14B-C13B-C12B	$121.48(14)$	C14B-C13B-H13B	119.3
C12B-C13B-H13B	119.3	C13B-C14B-C15B	$120.29(13)$
C13B-C14B-H14B	119.9	C15B-C14B-H14B	119.9
C16B-C15B-C14B	$119.82(14)$	C16B-C15B-H15B	120.1
C14B-C15B-H15B	120.1	C15B-C16B-C17B	$121.32(14)$
C15B-C16B-H16B	119.3	C17B-C16B-H16B	119.3
C16B-C17B-C12B	$118.89(12)$	C16B-C17B-C18B	$121.36(13)$
C12B-C17B-C18B	$119.74(12)$	C5B-C18B-C17B	$120.66(12)$
C5B-C18B-C19B	$120.36(11)$	C17B-C18B-C19B	$118.92(12)$

C24B-C19B-C20B	$118.12(12)$	C24B-C19B-C18B	$120.46(11)$
C20B-C19B-C18B	$121.42(12)$	C21B-C20B-C19B	$121.14(12)$
C21B-C20B-H20B	119.4	C19B-C20B-H20B	119.4
C22B-C21B-C20B	$119.64(12)$	C22B-C21B-H21B	120.2
C20B-C21B-H21B	120.2	O2B-C22B-C21B	$122.34(12)$
O2B-C22B-C23B	$117.49(12)$	C21B-C22B-C23B	$120.17(12)$
C24B-C23B-C22B	$119.61(12)$	C24B-C23B-H23B	120.2
C22B-C23B-H23B	120.2	C23B-C24B-C19B	$121.31(12)$
C23B-C24B-H24B	119.3	C19B-C24B-H24B	119.3
C26B-C25B-C4B	$120.88(12)$	C26B-C25B-H25B	119.6
C4B-C25B-H25B	119.6	C1B-C26B-C25B	$119.66(11)$
C1B-C26B-H26B	120.2	C25B-C26B-H26B	120.2
C1S-O1S-H1S	$109.5(15)$	O1S-C1S-H1S1	109.5
O1S-C1S-H1S2	109.5	H1S1-C1S-H1S2	109.5
O1S-C1S-H1S3	109.5	H1S1-C1S-H1S3	109.5
H1S2-C1S-H1S3	109.5	C2S-O2S-H2S	$111.8(15)$
O2S-C2S-H2S1	109.5	O2S-C2S-H2S2	109.5
H2S1-C2S-H2S2	109.5	O2S-C2S-H2S3	109.5
H2S1-C2S-H2S3	109.5	H2S2-C2S-H2S3	109.5
C3S-O3S-H3S	$113.5(14)$	O3S-C3S-H3S1	109.5
O3S-C3S-H3S2	109.5	H3S1-C3S-H3S2	109.5
O3S-C3S-H3S3	109.5	H3S1-C3S-H3S3	109.5
H3S2-C3S-H3S3	109.5	C4S-O4S-H4S	$112.3(15)$
O4S-C4S-H4S1	109.5	O4S-C4S-H4S2	109.5
H4S1-C4S-H4S2	109.5	O4S-C4S-H4S3	109.5
H4S1-C4S-H4S3	109.5	H4S2-C4S-H4S3	109.5

General procedure for synthesis of homopolymers P1-P4.
Homopolymers P1-P4 were obtained following the representative procedure in which 2.00 g of M1-M4 were added to a 20 mL scintillating vial. Followed by which, $1-3 \mathrm{~mL}$ of DMF, and $6 \times$ of stoichiometric equivalent of trimethylamine were added. Finally, stoichiometric amounts of DFCH was added via syringe. The reaction mixture was stirred at rt for $\sim 12 \mathrm{~h}$ and then reaction temperature was gradually adjusted to $40^{\circ} \mathrm{C}$ (for $\sim 6 \mathrm{~h}$) to $80^{\circ} \mathrm{C}$ (for $74-86$ h) before allowed to cool to rt. The reaction mixture was then precipice in 500 mL methanol: water mixture ($50 / 50$ $\mathrm{vol} / \mathrm{vol}$), and subsequently, Soxhlet extracted in methanol and hexane, respectively. The final product was dried in room temperature for 24 h and stored in a sealed container until further use.

Synthesis of homopolymer P1.

To a 20 mL scintillating vial equipped with magnetic stir bar was added $2.00 \mathrm{~g}(5.68 \mathrm{mmol})$ of $\mathbf{M 1}, 3.45 \mathrm{~g}(34.1 \mathrm{mmol})$ of trimethylamine, and 2 mL of DMF. The reaction mixture was mildly stirred for 2 min , and then $1.49 \mathrm{~g}(5.68 \mathrm{mmol})$ of decafluorocyclohexene (DFCH) was added via syringe. The reaction mixture was stirred at rt for $\sim 12 \mathrm{~h}$ and then
reaction temperature was gradually adjusted to $40^{\circ} \mathrm{C}$ (for $\sim 6 \mathrm{~h}$) to $80^{\circ} \mathrm{C}$ (for $74-86 \mathrm{~h}$) before allowed to cool to rt. The reaction mixture was then precipice in 500 mL methanol: water mixture ($50 / 50 \mathrm{v} / \mathrm{v}$), and subsequently, Soxhlet extracted in methanol and hexane, respectively, and dried under vacuum at $50^{\circ} \mathrm{C}$ for 12 h to give $\mathbf{P 1}(3.35 \mathrm{~g}, 74 \%$ yield) as white powder. IR: $1718,1599,1559,1500,1340,1269,1201,1165,1115,997,974,818,781$, and $517 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 8.26-7.99$ (br), 7.99-7.84 (br), 7.84-7.56 (br), 7.56-7.26 (br), 7.25-6.93 (br), 6.936.71 (br), 6.71-6.57 (br), 6.45-6.15 (br); ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 470 \mathrm{MHz}$, $\delta-73.4$ ($0.23 \mathrm{~F}, \mathrm{~s}$), -115.4 ($4 \mathrm{~F}, \mathrm{~s}$), -133.5 (4 F, s).

Synthesis
of homopolymer P2.

Homopolymer $\mathbf{P 2}$ was synthesized using the same procedure as $\mathbf{P 1}$ by using $\mathbf{M 2}$ as monomer. After, dried under vacuo produced P2 ($3.26 \mathrm{~g}, 70 \%$ yield) as white powder. IR: $3040,2924,1664,1560,1507,1484,1431,1338,1266,1192$, $1162,1119,995,969,820,768,686,607,549$, and $522 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.26-7.96$ (br), 7.96-7.69
(br), 7.69-7.46 (br), 7.46-6.98 (br), 6.98-6.80 (br), 6.80-6.23; ${ }^{19}{ }^{\mathrm{F}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right.$) $\delta-59.3$ ($0.11 \mathrm{~F}, \mathrm{~s}$), -0.73 (0.19 F, s), -109.2 (0.29 F, s), -115.25 (4 F, m), -121.9 (0.43 F, s), -133.4 (4 F, s).

Synthesis of homopolymer P3.

Homopolymer P3 was synthesized using the same procedure as $\mathbf{P 1}$ by using $\mathbf{M} 3$ as monomer. After, dried under vacuo produced P3 (3.27 g, 77\% yield) as white powder. IR: 1685, 1596, 1500, 1450, 1405, 1339, 1267, 1201, 1165, 1123, $998,972,819,773,733,660$, and $519 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.09-7.79$ (br), 7.79-7.55 (br), 7.55-7.28 (br), 7.24-6.95 (br), 6.95-6.65 (br), 6.65-6.34 (br), 6.34-5.85 (br); ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 470 \mathrm{MHz}$, $\delta-73.4(0.13 \mathrm{~F}, \mathrm{~s})$, 115.6 (4 F, s), -133.5 (4 F, s).

Synthesis of homopolymer P4.

Homopolymer P4 was synthesized using the same procedure as P1 by using M4 as monomer. After, dried under vacuo produced P4 (3.03 g, 68\% yield) as white powder. IR: 3069, 1670, 1605, 1580, 1527, 1502, 1448, 1420, 1339, 1269, $1239,1162,1123,1101,997,968,887,857,809,757,725,624,570,507$, and $477 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 8.87-8.60$ (br), 7.73-7.27 (br), 7.19-6.78 (br), 6.65-6.30 (br); ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 470 \mathrm{MHz}$, $\delta-75.7(0.02 \mathrm{~F}, \mathrm{~s})$, $114.1(0.39 \mathrm{~F}, \mathrm{~s}),-115.6(4 \mathrm{~F}, \mathrm{~s}),-129.6,-133.4(4 \mathrm{~F}, \mathrm{~m}),-151.3(0.04 \mathrm{~F}, \mathrm{~s})$.

Synthesis of homopolymer P5.
Homopolymer P5 was synthesized using the same procedure as P1 by using bisphenol A as monomer. After, dried under vacuo produced P5 ($2.6 \mathrm{~g}, 66 \%$ yield) as white powder. IR: 2968, 1663, 1603, 1502, 1341, 1271, 1199, $1165,1123,1015,998,974,914,827,723$, and $553 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.24-6.8$ (br), 6.8-6.65 (br), $6.54-6.37(\mathrm{br}) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz},\right) \delta-73.4(0.67 \mathrm{~F}, \mathrm{~s}),-74.3(0.30 \mathrm{~F}, \mathrm{~s}),-109.4(0.8 \mathrm{~F}, \mathrm{~s}),-115.4(4 \mathrm{~F}, \mathrm{~s}),-$ 133.5 (4 F, s).

Synthesis

$m \neq n$

In a 20 mL vial equipped with magnetic stir bar was added $1.44 \mathrm{~g}(3.82 \mathrm{mmol})$ of $\mathbf{M 3}, 0.87 \mathrm{~g}(3.82 \mathrm{mmol})$ of bisphenol A, 3.09 (30.53 mmol) of trimethylamine, and 2 mL of anhydrous DMF. The reaction mixture was mildly stirred for 2 min , and then $2.00 \mathrm{~g}(7.64 \mathrm{mmol})$ of decafluorocyclohexene (DFCH) was added via syringe. The reaction mixture was stirred at rt for $\sim 12 \mathrm{~h}$ and then reaction temperature was gradually adjusted to $40^{\circ} \mathrm{C}$ (for $\sim 6 \mathrm{~h}$) to $80^{\circ} \mathrm{C}$ (for $74-86 \mathrm{~h}$) before allowed to cool to rt . The reaction mixture was then precipice in 500 mL methanol: water mixture ($50 / 50 \mathrm{v} / \mathrm{v}$), and subsequently, Soxhlet extracted in methanol and hexane, respectively, and dried under vacuum at $50^{\circ} \mathrm{C}$ for 12 h to give P6 ($2.85 \mathrm{~g}, 71 \%$ yield) as white powder. IR: 1684, 1602, 1559, 1502, 1451, 1411, 1341, 1271, 1241, 1201, $1166,1125,993,975,829,774,735,661,525$, and $481 \mathrm{~cm}^{-1} ;{ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 470 \mathrm{MHz}$, $\delta-73.4(0.32 \mathrm{~F}, \mathrm{~s}),-74.4$ (0.1 F, s), -109.4(0.07 F, s), -115.4 (4 F, m), -133.5(4 F, s).

Synthesis of homopolymer P7

To a 20 mL scintillating vial equipped with magnetic stir bar was added $2.00 \mathrm{~g}(5.68 \mathrm{mmol})$ of $\mathbf{M 1}, 3.45 \mathrm{~g}(34.1 \mathrm{mmol})$ of trimethylamine, and 2 mL of DMF. The reaction mixture was mildly stirred for 2 min , and then $1.49 \mathrm{~g}(5.68 \mathrm{mmol})$ of decafluorocyclohexene (DFCH) was added via syringe. The reaction mixture was stirred at rt for $\sim 12 \mathrm{~h}$ and then reaction temperature was gradually adjusted to $120^{\circ} \mathrm{C}$ (for $\sim 6 \mathrm{~h}$) before allowed to cool to rt . The reaction mixture was then precipitated in 500 mL methanol: water mixture $(50 / 50 \mathrm{v} / \mathrm{v})$ to give $\mathbf{P} 7$.

Synthesis of homopolymer P8
Homopolymer P8 was synthesized using the same procedure as $\mathbf{P 7}$ by using M3 as monomer.

Figure S1. Fourier Transform Infrared (FT-IR) spectroscopic analyses of bisphenol M1-M4.

Figure S3. Heteronuclear multiple bond correlation (HMBC) spectroscopy and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of M1 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S5. Heteronuclear single quantum coherence (HSQC) spectra of $\mathbf{M 1}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure $\mathrm{S} 7 .{ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{M} 2$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S9. NOESY spectra of M3 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S10. ${ }^{13} \mathrm{C}$ - NMR spectra of $\mathbf{M} 3$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure
S11. ${ }^{1} \mathrm{H}-$
NMR spectra of $\mathbf{M 4}$ in $\mathrm{CD}_{3} \mathrm{OH}$.

Figur
e S12. ${ }^{13} \mathrm{C}$-NMR spectra of M4 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of
M4 in DMSO- d_{6}.

NOESY NMR spectra of $\mathbf{M 4}$ in DMSO- d_{6}.

Figure S15. ${ }^{13} \mathrm{C}$-NMR spectra of M 4 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S16. Heteronuclear single quantum coherence (HSQC) spectra of M4 in DMSO- d_{6}.

Figure S17. High resolution mass spectrometric analyses of M1.

Figure S18. High resolution mass spectrometric analyses of M2.

Figure S19. High resolution mass spectrometric analyses of M3.

Figure S20. High resolution mass spectrometric analyses of M4.

Figure S21. Fourier transform infrared analyses of P1-P4 between the wavelengths 2000 and 400 cm ${ }^{1}$.

Figure S22. Fourier Transform Infrared analyses of polymers P5-P6 between the wavelengths 2000$400 \mathrm{~cm}^{-1}$.

Figure S23. ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{P} 1$ in CDCl_{3}.

Figure S30. ${ }^{19} \mathrm{~F}$-NMR Spectra of $\mathbf{P 3}$ in CDCl_{3}.

Figure $\mathrm{S} 31 .{ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{P} 3$ in CDCl_{3}.

Fig
ure
S 3 c
2 .
${ }^{1} \mathrm{H}$

Figure S37. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{P 6}$ in CDCl_{3}.

Figure S38. ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{P 6}$ in CDCl_{3}.

Figure S39. ${ }^{19} \mathrm{~F}$-NMR spectra of $\mathbf{P 6}$ in CDCl_{3}.

References

S1. Motokawa, T.; Murase, H.; Yamada, M.; Miyauchi, S.; Minami, S.; Kuratani, H.; Shibayama, K. Manufacture of aromatic compounds with high heat resistance and high refractive index. JP 2011074012A. 2011.

