Supplementary Information

Monodisperse Oligo(δ -valerolactones) and Oligo(ϵ -caprolactones) with Docosyl (C₂₂) End-Groups

José E. Báez,^{*a} Kenneth J. Shea,^b Philip R. Dennison,^b Armando

Obregón-Herrera,^c and José Bonilla-Cruz^d

^a Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato (UG), Noria Alta S/N 36050, Guanajuato, Mexico. E-mail: jebaez@ugto.mx

^b Department of Chemistry, University of California, Irvine (UCI), Irvine, California 92697-2025, United States

[°] Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato (UG), Noria Alta S/N 36050, Guanajuato, México.

^d Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Unidad Monterrey), Av. Alianza Norte 202, PIIT, Autopista Monterrey-Aeropuerto Km 10, Apodaca, N.L., 66628 Mexico

To whom correspondence should be addressed: José E. Báez, e-mail: jebaez@ugto.mx

Table of Contents

Experimental		Page
•	ES1. Synthesis of PVL5.2.	4
	ES2. Synthesis of PCL6.8.	
Tables		
	Table S1. Monodisperse Oligomeric species derived	5
	from δ -valerolactone (VL) and ϵ -caprolactone (CL) with	
	docosyl [CH ₃ (CH ₂) ₂₁ -] (C ₂₂) terminal group, isolated by	
	column chromatography, and detected by ¹ H NMR.	
	Table S2. Comparison of measurements of MW and M_n	6
	obtained by NMR and SEC.	_
	Table S3. Thermal properties of oligometric species	1
F '	derived from C_{22} -PVL and C_{22} -PCL.	
Figures		0
	FIG. 51 'H NIVIR spectrum of monodisperse monomer	8
	Eig S2 ¹ H NMR spectrum of monodisperse monomer	Q
	$C_{22}CL_4$ in CDCl ₂ at 40 °C	9
	Fig. S3 13 C NMR (125 MHz) spectrum (full view) in C ₆ D ₆	10
	at 40 °C and assignment of peaks from monodisperse	10
	monomer $C_{22}VL_1$.	
	Fig. S4 ¹³ C NMR (125 MHz) spectrum (full view) in	11
	CDCl ₃ at 40 °C and assignment of peaks from	
	monodisperse monomer C ₂₂ CL ₁ .	
	Fig. S5 FT-IR spectrum and assignment of bands from	12
	monodisperse monomer C ₂₂ VL ₁ .	
	Fig. S6 FT-IR spectrum and assignment of bands from	13
	monodisperse monomer C ₂₂ CL ₁ .	
	Fig. S7 MALDI-TOF spectra of a) C ₂₂ VL ₄ and b) C ₂₂ VL ₅ .	14
	Fig. S8. MALDI-TOF spectrum of a) C ₂₂ CL ₄ .	15
	Fig. S9 'H NMR (400 MHz) spectra at room temperature	16
	for PVL using CDCI ₃ (top) and toluene- a_8 (C ₇ D ₈ , bottom)	
	Fig. S10 SEC obromotograme profile for a) CooCl a, b)	17
	Fig. 510 SEC circuitatografis profile for a) $C_{22}C_{22}$, b) $C_{22}PCL_{22}$, c) $C_{22}VL_{22}$, d) $C_{22}PVL_{22}$, (See Table S2)	17
	Fig. S11 ¹ H NMR (500 MHz) spectra (full view) in CDCl ₂	18
	at 40 °C of different monodisperse oligomers derived	10
	from ϵ -caprolactone (CL) with docosyl (C ₂₂) terminal	
	aroup and isolated by column chromatography a)	
	monomer $C_{22}CL_1$, b) dimer $C_{22}CL_2$, c) trimer $C_{22}CL_3$, and	
	d) tetramer $C_{22}CL_4$.	
	Fig. S12 SEC chromatograms profile crude of reaction	19
	of samples $C_{22}PVL$ (top, $DP_{theo} = 6$) and $C_{22}PCL$	
	(bottom, $DP_{theo} = 6$).	

Figures (Continuted)

Page

utou)	Fig. S13 MALDI-TOF spectrum of C ₂₂ PVL _{5.2} , the numbers indicate the degree of polymerization (DP) of each peak.	20
	Fig. S14 MALDI-TOF spectrum of C ₂₂ PVL _{5.2} , expansion view (700-1000 m/z) of Fig. S13.	21
	Fig. S15 Experimental MALDI-TOF mass spectrum of the hexamer species (Fig. S14) of VL with C ₂₂ end-group $[C_{22}VL_6Na^+, top]$ and isotopic distribution calculated for DP = 6 $[C_{52}H_{94}O_{13}Na^+ (C_{22}VL_6Na^+, bottom)]$ in http://www.chemcalc.org.	22
	Fig. S16 ¹ H NMR spectrum of $C_{22}PVL_{5.2}$ in C_7D_8 at 40 °C. The asterisk indicates the C_7D_8 solvent.	23
	Fig. S17 ¹³ C NMR spectrum of C ₂₂ PVL _{5.2} in C ₇ D ₈ at 40 °C.	24
	Fig. S18 MALDI-TOF spectrum of C ₂₂ PCL _{6.8} , the numbers indicate the degree of polymerization (DP) of each peak.	25
	Fig. S19 MALDI-TOF spectrum of C ₂₂ PCL _{6.8} , expansion view (800-1100 m/z) of Fig. S18.	26
	Fig. S20 Experimental MALDI-TOF mass spectrum of the hexamer species (Fig. S19) of CL with C ₂₂ end- group $[C_{22}CL_6K^+, top]$ and isotopic distribution calculated for DP = 6 $[C_{58}H_{106}O_{13}K^+ (C_{22}CL_6K^+, bottom)]$ in http://www.chemcalc.org	27
	Fig. S21 ¹ H NMR spectrum of C ₂₂ PCL _{6.8} in CDCl ₃ at 40	28
	Fig. S22 ¹³ C NMR spectrum of $C_{22}PCL_{6.8}$ in CDCl ₃ at 40 °C.	29

Experimental

ES1.*Synthesis of* $C_{22}PVL_{5.2}$. The procedure is similar to the synthesis of $C_{22}PVL$ (DP_{theo} = 6) described in the article. However, only the unreactive 1-docosanol (C₂₂OH) was isolated by flash column chromatography and obtaining the rest of oligomers in a single sample. NMR data at room temperature: ¹H NMR (500 MHz, C₇D₈, ppm). PVL_{5.2} (Fig. S16): δ 3.99 (t, 2H, [e, $-CH_2-O-$], C₂₂), 3.91 (t, 2H, [i, $-CH_2-O-$], PVL_{5.2}), 3.40 (t, 2H, [a, $-CH_2-OH$], PVL_{5.2}), 2.06 (quintet, 2H, [d, $-CH_2-CO-$], PVL_{5.2}), 2.09 (quintet, solvent: toluene-*d*₈ (C₇D₈)), 1.60 (quintet, 2H, [f, $-CH_2-CH_2-O-$], C₂₂), 1.51 (quintet, 2H, [b, $-CH_2-CH_2-O-$ or $-CH_2-CH_2-OH$], PVL_{5.2}), 1.42 (quintet, 2H, [b, $-CH_2-CO-$], PVL_{5.2}), 1.32 (m, 2H, [g, $-CH_2-$], C₂₂), 0.90 (t, 3H, [h, $-CH_3$], C₂₂). ¹³C NMR (125 MHz, C₇D₈, ppm). PVL_{5.2} (Fig. S17): δ 173.37 [a', *C*O(CH₂)₄OH, PVL_{5.2}], 172.95 [i', *C*O(CH₂)₄O, PVL_{5.2}], 64.82 [e, $-CH_2-O-$, C₂₂], 64.22 and 64.09 [i, $-CH_2-O-$, PVL_{5.2}], 62.40 [a, $-CH_2-$ OH, PVL_{5.2}]. DP_{NMR} = 5.2. SEC chromatograph is showed in Fig S10d. MALDI-TOF spectrum is visualized in Fig S13-S15. Thermal properties in Table S3.

ES2. Synthesis of $C_{22}PCL_{6.8}$. The procedure is similar to the synthesis of C_{22} -PCL described in the article, with a ε-caprolactone (CL)/1-docosanol (C₂₂OH) molar ratio equal to 6 (DP_{theo} = 6). However, only the unreactive 1-docosanol ($C_{22}OH$) was isolated by flash column chromatography and obtaining the rest of oligomers in a single sample. NMR data at room temperature: ¹H NMR (500 MHz, CDCl₃, ppm). PCL_{6.8} (Fig. S21): δ 4.06 (t, 2H, [e, -CH₂-O-], C₂₂ and t, 2H, [i, -CH₂-O-], PCL_{6.8}), 3.56 (t, 2H, [a, -CH₂-OH], PCL_{6.8}), 2.24 (quintet, 2H, [d, -CH₂-CO-], PCL_{6.8}), 1.59 (quintet, 2H, [b and d', -CH₂-CH₂-O-, -CH₂-CH₂-OH, -CH₂-CH₂-CO], PCL_{6.8}), 1.51 2H, [f, -*CH*₂-*C*H₂-*O*-], *C*₂₂), 1.32 (quintet, (quintet, 2H, [C, -CH₂-CH₂-CH₂-CO-], PCL_{6.8}), 1.19 (s, 2H, [g, -CH₂-], C₂₂), 0.81 (t, 3H, [h, -CH₃], C₂₂). ¹³C NMR (125 MHz, C₇D₈, ppm). PCL_{6.8} (Fig. S22): δ 173.56 [a´, CO(CH₂)₄OH, PCL_{6.8}], 173.34 [i', CO(CH₂)₄O, PCL_{6.8}], 64.32 [e, -CH₂-O-, C₂₂], 63.95 and 63.90 6.8. SEC [i, -CH₂-O-, PCL_{6.8}], 62.23 [a, -CH₂-OH, PCL_{6.8}]. DP_{NMR} = chromatograph is showed in Fig S10b. MALDI-TOF spectrum is visualized in Fig. S18-S20. Thermal properties in Table S3.

Table S1. Monodisperse oligomeric species derived from δ -valerolactone (VL) and ϵ -caprolactone (CL) with docosyl [CH₃(CH₂)₂₁-] (C₂₂) terminal group, isolated by column chromatography, and detected by ¹H NMR.

No.	Sample	Precursor	Species	DPtheo	DP _{NMR} ^a	MW(theo) ^b	MW(NMR)°
1	$C_{22}VL_1$	VL	monomer	1.0	1.02	426.72	428.72
2	$C_{22}VL_2$	VL	dimer	2.0	2.23	526.84	549.86
3	$C_{22}VL_3$	VL	trimer	3.0	2.99	626.96	625.95
4	$C_{22}VL_4$	VL	tetramer	4.0	3.95	727.08	722.07
5	$C_{22}VL_5$	VL	pentamer	5.0	4.94	827.20	821.19
6	$C_{22}CL_1$	CL	monomer	1.0	0.98	440.74	438.45
7	$C_{22}CL_2$	CL	dimer	2.0	1.91	554.88	544.60
8	C ₂₂ CL ₃	CL	trimer	3.0	2.77	669.02	642.76
9	$C_{22}CL_4$	CL	tetramer	4.0	3.66	783.16	744.35

^a $DP_{NMR} = I_{oli}/#H_{oli} \div I_{ter}/#H_{ter}$. Case of VL: I_{oli} at 2.10 ppm (CH₂-CO-O, VL) and I_{ter} at 4.05 ppm (CH₂-O-CO, docosyl terminal group); #H_{oli} and #H_{ter} = 2. Case of CL: I_{oli} at 2.31 ppm (CH₂-CO-O, CL) and I_{ter} at 3.65 ppm (CH₂-OH, hydroxyl terminal group); #H_{oli} and #H_{ter} = 2.

^b MW(theo) = DP_{theo} x MW_{lactone} (VL or CL) + MW_{docosanol}. MW_{VL} = 100.12 g/mol, MW_{CL} = 114.14 g/mol, and $MW_{docosanol}$ = 326.60 g/mol.

 c MW(NMR) = DP_{NMR} x MW_{lactone} (VL or CL) + MW_{docosanol}. MW_{VL} = 100.12 g/mol, MW_{CL} = 114.14 g/mol, and MW_{docosanol} = 326.60 g/mol.

No.	Sample	Precursor	Species	DP_{NMR}^{a}	DPsecb	<i>M</i> ∩(NMR) ^c	$M_n(SEC)^d$	${\it D}_{M}{}^{d}$	<i>M</i> n(NMR)/ <i>M</i> n(SEC) ^e
2	$C_{22}VL_2$	VL	dimer	2.23	4.82	549.86	810	1.18	0.67
7	$C_{22}CL_2$	CL	dimer	1.91	6.77	544.60	1100	1.04	0.49
8	C ₂₂ PVL _{5.2}	VL	Oligomer	5.20	13.31	847.22	1660	1.11	0.51
9	C ₂₂ PCL _{6.8}	CL	Oligomer	6.80	16.41	1102.75	2200	1.09	0.50

Table S2. Comparison of measurements of MW and M_n obtained by NMR and SEC.

^a DP_{NMR} = I_{oli}/#H_{oli} ÷ I_{ter}/#H_{ter}. Case of C₂₂VL₂: I_{oli} at 2.10 ppm (CH₂–CO–O, VL, in C₆D₆) [case of C₂₂PVL_{5.2}: 3.91 ppm (CH₂–O, VL, in toluene-*d*₈)] and I_{ter} at 4.03 ppm (CH₂–O–CO, docosyl terminal group, in C₆D₆) [case of C₂₂PVL_{5.2}: 3.40 ppm (CH₂–OH, VL, in toluene-*d*₈)]; #H_{oli} and #H_{ter} = 2. Case of C₂₂CL₂: I_{oli} at 2.31 ppm (CH₂–CO–O, CL, in CDCI₃) [case of C₂₂PCL_{6.8}: 2.24 ppm (CH₂–CO–O, CL, in CDCI₃)] and I_{ter} at 3.65 ppm (CH₂–OH, hydroxyl terminal group of CL, in CDCI₃)]; #H_{oli} and #H_{ter} = 2.

^b DP_{SEC} = Mn(SEC) – MWdocosanol/MWVL or CL.

 $^{\rm c}$ MW(NMR) = DP_{NMR} x MW_{lactone} (VL or CL) + MW_docosanol. MW_VL = 100.12 g/mol, MW_{CL} = 114.14 g/mol, and MW_docosanol = 326.60 g/mol.

^d Obtained by size-exclusion chromatography (SEC) using polystyrene standarts.

^e Overestimation of *M*_n obtained by SEC for PCL is a common feature, since polystyrene standards are used in the construction of the calibration curve. MacLain and Drysdale found that *M*_n(calcd) / *M*_n(SEC) ratio is around 0.45 for PCL. [See reference: S.J., McLain, and N.E., Drysdale, *Polym. Prepr. (Am. Chem. Soc., Polym. Div.)*, 1992, **33**, 174.]

Table S3. Thermal properties of oligomeric species derived from C_{22} -PVL_{5.2} and C_{22} -PCL_{6.8}.

No.	Sample	Precursor	DPNMR	C ₂₂	Ester	T _m	$\Delta H_{\rm m}$	$\Delta H_{\rm mPVL}$	ΔH_{mPCL}	X i
				(wt. %)	(wt. %)	(°C) ^a	(J/g)a	(J/g) ^{a,b}	(J/g) ^{a,c}	(%)ª
1	C ₂₂ PVL _{5.2}	VL	5.2	35	65	52	155	100.7	_	_
2	$C_{22}PCL_{6.8}$	CL	6.8	30	70	44	152	-	106.4	78

^a Obtained by differential scanning calorimetry (DSC).

^b Calculated by the equation $\Delta H_{mPVL} = (\Delta H_m).(x_{PVL})$, where x_{PVL} represent the weight fraction of PVL in the oligomer.

^c Calculated by the equation $\Delta H_{mPCL} = (\Delta H_m).(x_{PCL})$, where x_{PCL} represent the weight fraction of PCL in the oligomer.

^d Analyzed according to the equation $x_i = \Delta H_{mPCL} / \Delta H_m^\circ$, where ΔH_m° is the enthalpy of fusion to the PCL 100 % crystalline with a value of 135.3 J/g [Reference].

Fig. S1 ¹H NMR spectrum of monodisperse monomer $C_{22}VL_1$ in C_6D_6 at 40 °C.

Fig. S2 ¹H NMR spectrum of monodisperse monomer $C_{22}CL_1$ in CDCl₃ at 40 °C.

Fig. S3 ^{13}C NMR (125 MHz) spectrum (full view) in C₆D₆ at 40 $^\circ C$ and assignment of peaks from monodisperse monomer C₂₂VL₁.

carbon	δ	carbon	δ	carbon	δ
а	62.45	е	173.81	j	31.87
b	32.24	f	64.45	k	22.62
С	25.23	g	28.57	I	14.04
ď	24.61	h	25.86		
d	34.18	i	28.57 - 29.64		

Fig. S4 ^{13}C NMR (125 MHz) spectrum (full view) in CDCl₃ at 40 °C and assignment of peaks from monodisperse monomer C_{22}CL₁.

Fig. S5 FT-IR spectrum and assignment of bands from monodisperse monomer $C_{22}VL_1$ (Wavenumber in cm⁻¹).

Fig. S6 FT-IR spectrum and assignment of bands from monodisperse monomer $C_{22}CL_1$ (Wavenumber in cm⁻¹).

Fig. S7 MALDI-TOF spectra of a) C₂₂VL₄ and b) C₂₂VL₅.

Fig. S8 MALDI-TOF spectrum of C₂₂CL₄.

4.50 4.46 4.44 4.42 4.40 4.38 4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18 4.16 4.14 4.12 4.10 4.08 4.06 4.04 4.02 4.00 Chemical shift norm

Fig. S9 ¹H NMR (400 MHz) spectra at room temperature for PVL using CDCl₃ (top) and toluene-*d*₈ (C₇D₈, bottom) as solvent.

Fig. S10 SEC chromatograms profile for a) C₂₂CL₂, b) C₂₂PCL_{6.8}, c) C₂₂VL₂, d) C₂₂PVL_{5.2} (See Table S2).

Fig. S11 ¹H NMR (500 MHz) spectra (full view) in CDCl₃ at 40 °C of different monodisperse oligomers derived from ε -caprolactone (CL) with docosyl (C₂₂) terminal group and isolated by column chromatography, a) monomer C₂₂CL₁, b) dimer C₂₂CL₂, c) trimer C₂₂CL₃, and d) tetramer C₂₂CL₄.

Fig. S12 SEC chromatograms profile (crude of the reaction) of samples $C_{22}PVL$ (top, $DP_{theo} = 6$) and $C_{22}PCL$ (bottom, $DP_{theo} = 6$).

Fig. S13 MALDI-TOF spectrum of $C_{22}PVL_{5.2}$, the number indicates the degree of polymerization (DP) of each peak.

Fig. S14 MALDI-TOF spectrum of $C_{22}PVL_{5.2}$, expansion view (700-1000 m/z) of Fig. S13.

Fig. S15 Experimental MALDI-TOF mass spectrum of the hexamer species (Fig. S14) of VL with C₂₂ end-group [C₂₂VL₆Na⁺, top] and isotopic distribution calculated for DP = 6 [C₅₂H₉₄O₁₃Na⁺ (C₂₂VL₆Na⁺, bottom)] in http://www.chemcalc.org.

Fig. S16 ¹H NMR spectrum of $C_{22}PVL_{5.2}$ in C_7D_8 at 40 °C. The asterisk indicates the C_7D_8 solvent.

Fig. S17 ^{13}C NMR spectrum of C_{22}PVL_{5.2} in C_7D_8 at 40 °C.

Fig. S18 MALDI-TOF spectrum of $C_{22}PCL_{6.8}$, the number indicates the degree of polymerization (DP) of each peak.

Fig. S19 MALDI-TOF spectrum of $C_{22}PCL_{6.8}$, expansion view (800-1100 m/z) of Fig. S18.

Fig. S20 Experimental MALDI-TOF mass spectrum of the hexamer species (Fig. S19) of CL with C₂₂ end-group [C₂₂CL₆K⁺, top] and isotopic distribution calculated for DP = 6 [C₅₈H₁₀₆O₁₃K⁺ (C₂₂CL₆K⁺, bottom)] in http://www.chemcalc.org.

Fig. S21 ¹H NMR spectrum of C₂₂PCL_{6.8} in CDCl₃ at 40 °C.

Fig. S22 ¹³C NMR spectrum of $C_{22}PCL_{6.8}$ in CDCl₃ at 40 °C.