Supplementary information

Drug-polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers

Jong-Ryul Park,^{*a*} Mariah Sarwat,^{*a*} Eleonore C.L. Bolle,^{*a*} Melody A. de Laat,^{*a*} Joachim F. R. Van Guyse,^{*b*} Annelore Podevyn,^{*b*} Richard Hoogenboom,^{**b*} and Tim R. Dargaville ^{**a*}

^aInstitute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia.

^bSupramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.

Fig. S1 FTIR spectra of PPropOx-OH and PPropOx-BNZ conjugates. The ester absorbance at 1730 cm¹ increased with increasing BNZ loading content.

Fig. S2 DOSY NMR spectra for PPropOx-BNZ conjugates. Vertical axis represents the diffusion coefficient and horizontal axis indicates chemical shifts.

Fig. S3 SEC chromatograms of PPropOx-OH and PPropOx-BNZ conjugates. (a) UV absorbance at 300 nm (b) normalized with RI response. (Eluent = DMAc)

Fig. S4 lsothermal aggregation kinetics of PPropOx-BNZ $_{15wr\%}$ with the concentration of 1 mg/mL in various temperatures and (b) turbidity curves upon heating for different concentrations of PPropOx-BNZ $_{15wr\%}$.

Fig. S5 The curves of turbidity versus temperature of $PPropOx-BNZ_{15wr\%}$ with different amounts of albumin. (Polymer concentration= 1 mg/mL)