Supporting Information

Janus Dimers from Tunable Phase Separation and Reactivity Ratio

Lei Tian, *a Bei Li, ^{b,c} Xue Li ^{b,c} and Qiuyu Zhang *b,c</sup>

 ^a Institute of Low-Dimensional Materials Genome Initiative College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

^b Department of Applied Chemistry, School of Natural and Applied Sciences,

Northwestern Polytechnical University, Xi'an 710072, China

^c MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Xi'an 710072, China

*Corresponding author:

E-mail: leitian@szu.edu.cn

Figure S1. Dispersion polymerization of GMA with 20% MMA.

Figure S2. DLS size distribution of PGMA/PSMA Janus dimers.

Figure S3. SEM image of spherical PGMA/PS particles prepared by dispersion polymerization of GMA and St at 80 °C.

Monomer Group-1	Q	e	Reactivity ratio	
GMA	1.03	0.57	1.29	
SMA	0.87	0.72	0.76	
Monomer Group-2	Q	e	Reactivity ratio	
GMA	1.03	0.57	0.47	
St	1	-0.8	0.32	
Monomer Group-3	Q	e	Reactivity ratio	
SMA	0.87	0.72	0.29	
St	1	-0.8	0.34	
Monomer Group-4	Q	e	Reactivity ratio	
GMA	1.03	0.57	1.26	
MMA	0.74	0.4	0.77	
Monomer Group-5	Q	e	Reactivity ratio	
St	1	-0.8	0.52	
MMA	0.74	0.4	0.46	

Table S1. The reactivity ratios of different monomers calculated by Q-e Scheme.

Polymer Groups	PGMA-	PGMA-	PGMA-	PS-	PS-
	PMMA	PS	PSMA	PSMA	PMMA
Δδ	0.2	1.1	2.9	1.8	1.3

Table S2. The difference of solubility parameters of polymer groups.

Figure S4. The monomer conversion of GMA-SMA dispersion polymerization.

Figure S5. Fabrication of colloidal clusters. (a) Schematic illustration of the formation of colloidal clusters (b-c) SEM images of PGMA/PSMA crosslinked particles with 1.0% DVB.

Figure S6. Seeded emulsion polymerization of PGMA/PSMA Janus dimers. (a,b)

SEM images of swollen Janus particles. (c) Polymerized PGMA/PSMA@PSt particles and (d) PGMA/PSMA@P(St-MAA) particles.