Supplementary Information

Thermoresponsive cationic dendronized copolymers and their corresponding nanogels as smart gene carriers

Di Wu,[‡]a Jianhui Wu,[‡]a Pei Tao,[‡]a Yi Yao,^a Jing Wang,^b Dongfei Liu,^c Fuxue Chen,^b Biyi Xu,^a Wen

Li,*a and Afang Zhanga

^{a.} Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.

^{b.} School of Life Science, Shanghai University, Nanchen Street 333, Shanghai 200444, China.

^{c.} State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China

*E-mail: <u>wli@shu.edu.cn</u>. Tel: +86-21-66138044

[‡] These authors contribute equally to this work.

Table of Contents

Table S1. Conditions for and results from the copolymerization of MG1-OEt with MG1-Boc	S3
Table S2. The elemental analysis results and the calculated molar ratio of MG1-OEt/MG1-N	${ m H_{3}^{+}}$ with in
NGs	S3
Figure S1. ¹ H NMR spectrum of compound 2 in CDCl ₃	
Figure S2. ¹ H NMR spectrum of compound 3 in CDCl ₃	S4
Figure S3. ¹ H NMR spectrum of compound 4 in CDCl ₃	S4
Figure S4. ¹ H NMR spectrum of MG1-Boc in CDCl ₃	S5
Figure S5. ¹ H NMR spectrum of MG1-NH ₃ ⁺ in CDCl ₃	S5
Figure S6. ¹ H NMR spectrum of P1-Boc in d ₆ -DMSO	S6
Figure S7. ¹ H NMR spectrum of P2-Boc in d ₆ -DMSO	S6
Figure S8. ¹ H NMR spectrum of P1 in d ₆ -DMSO	S7
Figure S9. ¹ H NMR spectrum of P2 in d ₆ -DMSO	S7
Figure S10. Hydrodynamic radius of NGs by dynamic light scattering in pH=7.4 PBS Buffer	(C= 0.01
mol·L ⁻¹) at different concentration and temperature.	S8
Figure S11. Plots of transmittance vs temperature for P1 (a) and P2 (b) in pH=7.4 PBS Buffer	: (C= 0.01
mol·L ⁻¹) at different concentration, as well as (c) T_{cp} dependence of P1 and P2 on sol	lution
concentrations	S8
Figure S12. R_h of NG/siRNA complexes at different N/P ratios at room temperature. The comp	plexes were
incubated for 30 min before measurements (C = $0.05 \text{ mg} \cdot \text{mL}^{-1}$)	S9
Figure S13. Quantitative siRNA binding ability of P1 and P2 (a), as well as NGs (b) by adding	fluorescent
dye EB using fluorescence spectrophotometer	
Figure S14. Cell viability of BV2 cells after incubation with cationic copolymers P1, P2 and N	Gs at given
concentrations	S10
Figure S15. CLSM images of BV2 cells after being treated with Cy5 - siRNA/P1 (a), Cy5 -	siRNA/ P2
(b), Cy5 - siRNA/NGs (c), Cy5 - siRNA/Lipofectamine 3000 (d) complexes for 1-	-4 h at N/P
ratio of 10	S10

Polymers	Feed Ratio	$M_{ m n}\!\! imes\!10^5$	PDI ^a	Actual	$T_{\rm c}$ (°C) °	
	(MG1-OEt:MG1-	(kDa) ^a		Ratio ^b		
	Boc)					
P1	15:1	3.02	2.60	12:1	41.1	
P2	30:1	1.84	2.19	26:1	37.3	

Table S1. Conditions for and results from the copolymerization of MG1-OEt and MG1-Boc.

^a Measured by GPC.

^bCalculated from ¹H NMR spectra (Fig.S11 and Fig.S12) by comparing the integrations of peak a (from OEG dendrons) to peak c (from Boc groups).

^c Determined by turbidity measurements using UV/Vis spectroscopy.

Table S2. The elemental analysis results and the calculated molar ratio of MG1-OEt/MG1-NH₃⁺ within the NGs.

Sample	C(wt%)	N(wt%)	C/N	Calculated molar ratio
NGs	64.37	0.18	363.95	36:1

Figure S1. ¹H NMR spectrum of compound 2 in CDCl₃. Signals from solvents are marked with asterisks.

Figure S2. ¹H NMR spectrum of compound 3 in CDCl₃. Signals from solvents are marked with asterisks.

Figure S3. ¹H NMR spectrum of compound 4 in CDCl₃. Signals from solvents are marked with asterisks.

Figure S4. ¹H NMR spectrum of MG1-Boc in CDCl₃. Signals from solvents are marked with asterisks.

Figure S5. ¹H NMR spectrum of $MG1-NH_3^+$ in CDCl₃. Signals from solvents are marked with asterisks.

Figure S6. ¹H NMR spectrum of P1-Boc in d_6 -DMSO.

Figure S7. ¹H NMR spectrum of P2-Boc in d_6 -DMSO.

Figure S8. ¹H NMR spectrum of **P1** in d_6 -DMSO.

Figure S10. Hydrodynamic radius of **NGs** by dynamic light scattering in pH=7.4 PBS buffer at different concentration and temperature.

Figure S11. Plots of transmittance *vs* temperature for **P1** (a) and **P2** (b) in pH=7.4 PBS buffer at different concentrations, as well as (c) dependence of T_{cp} of **P1** and **P2** on solution concentrations.

Figure S12. R_h of NGs/siRNA complexes at different N/P ratios at room temperature. The complexes were incubated for 30 min before measurements (C = 0.02 mg·mL⁻¹).

Figure S13. Quantitative siRNA binding ability of P1 and P2 (a), as well as NGs (b) by adding fluorescent dye EB using fluorescence spectrophotometer. $C = 0.05 \text{ mg} \cdot \text{mL}^{-1}$.

Figure S14. Cell viability of BV2 cells after incubation with cationic polymers P1, P2 and NGs at different concentrations.

S11

Figure S15. CLSM images of BV2 cells after being treated with Cy5-siRNA/P1 (a), Cy5-siRNA/P2 (b), Cy5-siRNA/NGs (c), Cy5-siRNA/Lipofectamine 3000 (d) complexes for 1-4 h at N/P ratio of 10.