Supporting Information

Miniemulsion Photopolymerization in a Continuous Tubular Reactor: Particle Size Control via Membrane Emulsification

Nida Nauman,^{a,b} Neomy Zaquen,^{a,c,d} Cyrille Boyer,*,a,c and Per B. Zetterlund*,a

^a Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering, The University of New South Wales, High Street Gate 2, 2033 Kensington, Sydney, NSW, Australia.
^b Department of Polymer and Process Engineering, University of Engineering and Technology, G.T. Road, 54890 Lahore, Punjab, Pakistan.
^c Australian Centre for Nanomedicine, The University of New South Wales, High Street Gate 2, 2033 Kensington, Sydney, NSW, Australia.

^d Institute for Materials Research (IMO-IMOMEC), Universiteit Hasselt, Agoralaan Building D, B-3590 Diepenbeek, Belgium.

* Corresponding authors: cboyer@unsw.edu.au; p.zetterlund@unsw.edu.au

Scheme. S1. Schematic illustration of SPG membrane emulsification. Reprinted (adapted) with permission from ref.⁴⁵ Copyright 2017 Royal Society of Chemistry.

Fig. S1. Droplet size distribution for pore size 300 nm with varying SDS concentration 1 to 8 wt% and 0.01 M TPO (Table 1; Run F1-F5).

Fig. S2. Concentration of free SDS in the aqueous phase after completion of the emulsification as function of initial SDS amount for pore size 300 nm (Table 2, Run F1-F5) and 200 nm (Table 2, Run F6-F7).

Calculation of Free Surfactant Concentration

The surfactant concentrations studied were ranging from 1 to 8 wt%. The total interfacial area was calculated for each surfactant concentration using initial droplet diameters measured via DLS using the following formulae:

A (interfacial area) =
$$N_d \cdot \pi \cdot D^2$$

Where, $N_d =$ number of monomer droplets and D = avg. droplet diameter.

$$N_d = rac{m_M}{m_d}$$
 and $m_d =
ho_M rac{4}{3} \pi r^3$

Where, $m_M = \max$ of monomer, $m_d = \max$ of droplet, $\rho_M = \operatorname{density}$ of monomer and r = D/2

From the obtained interfacial area (A), the number of SDS molecules at the interface ${}^{N}SDS$ was calculated using:

$$N_{SDS} = A \cdot \Gamma_{cmc}$$

Where, Γ_{cmc} is the surface conc. of SDS at interface and is equal to $4.17 \times 10^{-10} mol \cdot cm^{-2}$.⁴⁷

To obtain the amount of free surfactant, the value obtained from step 2 was subtracted from the actual surfactant amount used.

Comments: The above calculations are based on a surface concentration of SDS at a styrene water interface as reported by Chang et al.⁴⁷ Table 2 presents the results of these calculations. Average droplet diameter used in above calculation were measured via DLS, also reported in Table 2 in main text.

Fig. S3. Size distribution for pore size 200 nm with 8 wt% SDS and 0.01 M TPO (Table 1; Run B17; $D_{z, \text{ particle}} = 346$ nm and PDI = 0.85) photopolymerized in batch. Dotted line: Droplets (before polymn.); Full lines: Particles (after polymn.).

Fig. S4. Size distribution for pore size 400 nm with 3 wt% SDS and 20 wt% NaCl (Table 1; Run F13; $D_{z, \text{ particle}} = 160 \text{ nm}$ and PDI = 0.49). Dotted line: Droplets (before polymn.); Full lines:

Particles (after polymn.)

Fig. S5. TEM image of polymer particles for pore size 400 nm with 3 wt% SDS and 10 mol % HQ as aqueous phase radical scavenger (Table 1; Run F14).

Fig. S6. Conversion as function of polymerization time for pore size 400 nm using 10 mol% HQ and 3 wt% SDS (Table 1; Run F14).

Fig. S7. Molecular weight distributions for photoinduced polymerization for pore size (a) 100 (Run F16) (b) 200 (Run F9) (c) 300 (Run F15) and (d) 400 (Run F12) nm.

Table S1. Summary of Photopolymerization of SPG membrane emulsified emulsions in	1 continuous
flow reactor. ^a	

Run	Pore size (nm)	D _z ^b (nm)	PdI ^b	D _z ^b (nm)	PDI ^b	α ^c (%)	M _n ^d (× 10 ⁵) g/mol
		Dro	plets	Particles			
				223	0.034	39	3.0
				211	0.079	60	2.7
F1 (100		0.044	218	0.035	68	3.0

					223	0.041	71	3.60	
					220	0.123	80	3.8	
					212	0.014	92	3.5	
					399	0.084	34	3.2	-
	F9		415	0.04	382	0.094	45	4.0	
		200			370	0.103	53	3.0	
					394	0.08	60	3.21	
					422	0.168	70	1.99	
					688	0.140	28	2.45	-
	F15	300	758	0.116	688	0.111	41	3.71	
					674	0.372	56	1.99	
					714	0.291	63	2.79	
					788	0.088	64	2.77	
					772	0.37	69	1.99	
^a Monomer were with 100- size with	F12	400	935	0.119	909	0.243	31	1.78	-
					814	0.244	42	1.37	droplets
					835	0.18	57	2.31	prepared
					873	0.284	65	1.93	400 nm pore 0.01 mol/L
5120 11111	-								

of TPO and 6 wt% solid contents, polymerized at room temperature under visible radiation (violet, λ_{max} = 405 nm)

^b Z-average diameter and polydispersity index analysed from DLS;
 ^c Monomer conversion were determined via gravimetric calculation.
 ^d Number average molecular weight measured by GPC.