Decagram Scale Production of Deuterated Mineral Oil and Polydecene as Solvents for Polymer Studies in Neutron Scattering

Supplementary Information

Mitchell A. Klenner,¹ Marina Cagnes,¹ Kathleen Wood,² Kazuki Mita,^{3*} Mizuki Kishimoto³ and Tamim Darwish^{1*}

¹ National Deuteration Facility (NDF), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, Australia.

² Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, Australia.

³ Process Technology Laboratory, Mitsui Chemicals, Inc., Sodegaura, Chiba, Japan.

Contents

NMR & IR spectroscopy of protonated and deuterated mineral oil	2
NMR spectroscopy & stability assessment of poly(1-decene)	6
GPC of protonated and deuterated mineral oil and poly(1-decene)	10
Determination of the critical overlap concentration	11

NMR & IR spectroscopy of protonated and deuterated mineral oil

Figure S1. FTIR spectrum of protonated mineral oil.

Figure S2. ¹H NMR (400 MHz, CDCl₃) of protonated mineral oil.

Figure S3. ¹³C{¹H} NMR (101 MHz, CDCl₃) of protonated mineral oil.

Figure S4. ¹H NMR (400 MHz, CDCl₃) of deuterated mineral oil.

Figure S5. ²H NMR (61.4 MHz, CDCl₃) of deuterated mineral oil.

Figure S6. ¹³C{¹H} NMR (101 MHz, CDCl₃) of deuterated mineral oil.

Figure S7. ¹³C{¹H, ²H, d1 = 20 s} NMR (101 MHz, CDCl₃) of deuterated mineral oil.

Figure S8. Sum of the integrals for the methyl carbon-13 resonance signals (CH₃, CDH₂, CD₂H and CD₃) of mineral oil. Sum of peak areas containing D / Sum of peaks areas containing D and H = $(3 \times 1.000 + 2 \times 0.7627) / (3 \times 1.000 + 3 \times 0.7627 + 3 \times 0.5108) = 66\%$ D

NMR spectroscopy & stability assessment of 1-(polydecene)

Figure S9. ¹H NMR (400 MHz, CDCl₃) of protonated poly(1-decene).

Figure S10. ¹³C{¹H} NMR (101 MHz, CDCl₃) of protonated poly(1-decene).

Figure S11. ¹H NMR (400 MHz, CDCl₃) of deuterated poly(1-decene).

Figure S12. ¹H NMR (400 MHz, CDCl₃) of deuterated poly(1-decene), 5 month stability assessment.

Figure S13. ²H NMR (61.4 MHz, CDCl₃) of deuterated poly(1-decene).

Figure S14. ²H NMR (61.4 MHz, CDCl₃) of deuterated poly(1-decene), 5 month stability assessment.

Figure S15. ¹³C{¹H} NMR (101 MHz, CDCl₃) of deuterated poly(1-decene).

Figure S16. ¹³C{¹H, ²H, d1 = 20 s} NMR (101 MHz, CDCl₃) of deuterated poly(1-decene).

GPC of protonated and deuterated mineral oil and poly(1-decene)

Figure S17. GPC curves of protonated and deuterated mineral oil.

Figure S18. GPC curves of protonated and deuterated poly(1-decene).

Determination of the Critical Overlap Concentration

The critical overlap concentration (ϕ^*) was calculated was calculated using equation S1, whereupon M_P is the molecular weight of the polymer and N_A refers to Avogadro's number. The radius of gyration, R_g , was calculated using equation S2 whereupon b is the bond length, C^{∞} is the characteristic ratio and n is the number of bonds along the polymer backbone. ϕ^* was converted to the critical overlap concentration in weight, C^* , by adopting densities of the polymer (0.85 g.cm⁻³) and the solvent (0.83 g.cm⁻¹).

$$\phi^* = \left(\frac{M_p}{N_A \rho_p}\right) \left(\frac{4}{3}\pi R_g^3\right)^{-1} \tag{S1}$$

$$R_g = \frac{b\sqrt{C_{\infty}n}}{\sqrt{6}} \tag{S2}$$