Electronic Supplementary Material for :

All Poly(ionic liquid) Block Copolymer Nanoparticles from Antagonistic Isomeric Macromolecular Blocks via Aqueous RAFT Polymerization-Induced Self-Assembly

Jérémy Depoorter,¹ Xibo Yan,^{1,3} Biao Zhang,^{1,4} Guillaume Sudre,² Aurélia Charlot,¹ Etienne Fleury¹ and Julien Bernard^{1*}

¹: Univ Lyon, INSA Lyon, CNRS, IMP UMR 5223, F-69622, Villeurbanne, France

²: Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IMP UMR 5223, F-69621, Villeurbanne, France

³: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

⁴: Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072 Shaanxi, China

Figure S1: ¹H NMR of 2-Bromododecyl acrylate in DMSO-d⁶ at 298 K.

Figure S2:¹H NMR of ADEIBr in DMSO-d⁶ at 298 K.

Figure S3: ¹³C NMR of ADEIBr in DMSO-d⁶ at 298 K.

Figure S4:¹H NMR of 2-bromoethyl acrylate in DMSO-d⁶ at 298 K.

Figure S5: ¹H NMR of AEDIBr in DMSO-d⁶ at 298 K.

Figure S6: ¹³C NMR of AEDIBr in DMSO-d⁶ at 298 K.

Figure S7: ¹H NMR of EMP in CDCI₃ at 298 K.

Figure S8 : 13 C NMR of EMP in CDCI₃ at 298 K.

Figure S9: ¹H NMR of ADEIBr polymerization medium (in DMSO-d₆ at 298 K). using EMP as a CTA and ACPA as an initiator ([ADEIBr]:[EMP]:[ACPA] = 100:1:0.2) at t₀ (a) and t_f (83% of conversion) (b)

Figure S10: ¹H NMR of purified PADEIBr₉-*b*-PNIPAAm₁₈₀ in D₂O at 298 °K ([NIPAAm]:[mCTA]:[ACPA] = 400:1:0.2 at 15 wt.%).

Figure S11: Monomer conversion *vs* time curve (black circles) obtained for the RAFT polymerization of AEDIBr 40 % w/w at 70 °C in DMF using EMP as a CTA and ACPA as an initiator ([AEDIBr]:[EMP] :[ACPA] = 100:1:0.2) and corresponding semilogarithmic plots (red squares)

Figure S12: SEC traces evolution for D_{10} - E_{200} -5, D_9 - E_{400} -5, D_9 - E_{600} -5 and D_9 - E_{800} -5 (first graph, up), D_9 - E_{200} -15, D_9 - E_{400} -15, D_9 - E_{600} -15 and D_9 - E_{800} -15 (second graph, middle), D_9 - E_{200} -25, D_9 - E_{400} -25, D_9 - E_{600} -25 and D_9 - E_{800} -25 (last graph). Analyses peformed in DMF/LiTFSI as eluent after ionic exchange of bromide anions by TFSI).

Figure S13: Representative TEM picture of PIL block copolymer spherical nanoparticles obtained at 5 wt% solid contents (E_9 - D_{600} -5).

Figure S14: DLS in water of D9-E200-15, D9-E400-15 and D9-E800-15

Figure S15: Histograms relative to TEM pictures of spherical particles

Figure S16: DSC s of PADEIBr and PAEDIBr (at 10°C/min).

Removal of the trithiocarbonate end-group from PADEIBr9

50 mg of PADEIBr₉ (1.21% 10⁻⁴ mol) were dissolved in 10 mL of DMSO. Then, addition of 70 mg of ethanolamine (1.21% 10⁻³ mol, 10 molar eq.) in the solution provoked a change of the coloration. The solution was stirred for 30 min and 680 mg of NIPAAm (6.03 % 10⁻³ mol, 50 molar eq.) was subsequently added in the solution with the presence of 16.6 mg of dimethylphenylphosphine (1.21% 10⁻⁴ mol, 1 molar eq.). The solution was reacted overnight at 25 °C and washed five times with a water/dichloromethane solution (5% 25 mL) followed by dialysis (Mw cut off = 1000 Da) and freeze-drying. The obtained powder was analyzed by ¹H NMR in DMSO-d₆(Yield: 42 mg; 82 %).