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1. Standard curves of Ph-OH and DPC

The standard curve of Ph-OH was obtained as shown in Figure S1a, and the fitted

equation ¥ = 31471+ 1.17 X 10°x exhibited an excellent linear relation in the

. -5 -3 . .
concentration range of 1.8 X 10 ".7.0 X 10 "~ g/m[.. The solution concentration of

Ph-OH (Cph.on) calculated by the standard curve was converted to the melt
concentration of Ph-OH (C)) in the reaction system according to Eq. (S1):
_ CpponX (Mg + Mppc)

Co X Mpp,_ o (Visp + VDPC), (S

where, the C, = 0.01 g/mL, which was the concentration of the extracted melt

Cp

acetonitrile solution. The molar mass of ISB (Mjsg), Mppc and Mpy_oy was 146.1,214.2,
and 94.1 g/mol, respectively. The molar volume of ISB (Visg) and Vppc was 99.0 and
178.9 cm3/mol.

The standard curve of DPC was shown in Figure S1b, and the fitted equation
y =33385+8.12 x 10%x appeared an excellent linear relation in the concentration

range of 2.2 X 10~ °.7.0x 1073 g/mL. Then the melt concentration of DPC (Cy) was

obtained by Eq. (S2) based on the solution concentration of DPC (Cppc):

_ CppeX (M;sp + Mppc)
Co X Mppe X (Vigg+ Vppc), (S2)
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Figure S1. The standard curve of (a) PhOH and (b) DPC

2. Determination of K, k* and k-

According to the Bi et al.,[!] the reaction rate (r) can be expressed as follows:

d[P]

Yy = ——
dt

= k™ [A][B] - k™ [C][P]
: (S3)

where: [A], [B], [C] and [P] represented respectively the current concentrations of -OH
group, phenyl carbonate group, ISB-PC repeating unit and Ph-OH. £" and k& were
respectively the inherent forward and backward reaction rate constants, and ¢ was time.

The reagents were added at equimolar ratio, and the consumptions were the same

for A and B, so [A] = [B] = [A], - [P] and [P] = [C] at any time. When the reaction

did not reach an equilibrium, r can be expressed by the [P]:

d[P]

r=——=k*([A], - [P])? -k~ [P]?
" ([Alo - [P]) | s4)
d[P] _
At equilibrium, dt , the equilibrium constant K can be expressed as
follows:
+ [PTe

K = — = >

([A]O - [P]e) (S5)

where [P]. was the equilibrium concentration of Ph-OH.

Based on the Egs. (S4) and (S5), the r can be expresses as follows:

r=——m=k"([4l,- [P])Z—E[P]2
K= (S6)



Then k' can be expressed further by integrating:

ktt
2[4],

(87)
The left-hand side of Eq. (S7) was regarded Y, which was linearly related to the z.

3. NBO atomic charge distribution and selected bond lengths
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Figure S2. (a) NBO atomic charge distribution and (b) selected bond lengths

4. The assignment of proton peak in 'TH NMR
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Figure S3. HMQC spectra of (a) ISB and (b) ISB-PC oligomer
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Figure S4. The '"H NMR spectra of oligomers catalyzed by LiOH

According to the previous literatures,!>* HMQC spectra of the ISB and ISB-PC
oligomer were given as shown in Figure S3, and thus the assignment of relative proton
peak in 'TH NMR was affirmed (Figure S4). The peaks at 84.06, 5.10, 4.90, 4.55, 5.13,
and 3.92 ppm were assigned to hydrogen atoms recorded as 1, 2, 3, 4, 5, and 6 of ISB-
PC repeating unit, respectively. The peaks at 33.88, 3.99, 4.40, 4.66, 4.37, and 3.56
(4.30) ppm were assigned to hydrogen atoms recorded as I, I, III, IV, V, and VI of
ISB, respectively. In addition, the peaks at 64.40 and 3.60 ppm were respectively
assigned to terminal exo-OH and endo-OH of ISB-PC oligomer.

It was apparently observed that the ‘III’ and ‘V’ peaks of ISB is overlapping with
the ‘c’ peak of oligomer, while the ‘VI’ is approaching to the ‘e’ in the initial stage of
transesterification in Figure S4. To calculate accurately the contents of terminal -OHs,

the overlapping ISB was subtracted according to the Egs. (S8) and (S9):

I +1 -1
exo - OH endo - OH Ph-OH
Cexo—0H=(Iexo—0H_2x 3 )/IIV

; (S8)

I +1 -1
exo - OH endo - OH Ph-OH
Cendo -0H ™ (Iendo— OH ~ 3 )/IIV

) (89)
where, Cexo-on and Cendo - oH were respectively the content of terminal exo-OH and

endo-OH. lexo - on and lendo - on represented the integration of peaks at 64.40-4.37



ppm and 63.60-3.56 ppm, and Tpn-on and Iy were the integration of ‘d’ and ‘IV’

peaks, respectively.
5. The assignment of signal peak in GC-MS

According to the MS in Figure S7, the assignment of the signal peaks in Figure 4
can be affirmed except 5 and 6 by comparing with data in the NIST MS library. Because
the molar mass was the 266.1 g/mol, signals 5 and 6 were believed as the A _.,4-0n and
A _exo-on. It was reported that the intermolecular hydrogen bonding of terminal exo-OH
can raises the boiling point.’! Therefore, the peak 5 was regard as the Aj_¢,40-0n and
peak 6 was A _or0-0H-

The GC-MS spectrum of melt catalyzed by KOH for 5 min at 160 °C was shown
in Figure S5. Signals 7 and 8 were regarded as the A;_¢,.40-0n1 and Aj_cyp.on With the molar
mass of 438.1 g/mol. Notably, it was observed that the abundance of signal peak 5 was
similar to that of signal 6, and peak 7 was similar to peak 8, which were consistent with
the narrowest disparity of two terminal -OH contents at the critical time as shown in
Figure 6, further to confirm the above the conclusion.

In addition, the only peak was detectable at the middle position between A _¢,40-0n
and Aj_.on in GC-MS spectra of the IMD-PC oligomer (Figure S6), and it was

identified as A, of IMD-PC with 266.1 g/mol.
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Figure S5. The GC-MS spectra of the reaction melt obtained by KOH using ISB at 160 °C for 5 min
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Figure S6. The GC-MS spectra of the reaction melt using IMD without catalysts at 160 °C for 145 min
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Figure S7. MS spectra of (a-f) peaks 1, 2, 4, 5, 6 and 9 in Figure S5 and (g) peak 5/6 in Figure S6

7. The probable catalytic mechanism
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Scheme S1. The probable catalytic mechanism of transesterification between ISB and DPC

7. Activation energy and reaction heat of transesterification



The activation energy (E') was determined by the Arrhenius equation (S10) and by

simplifying as in Eq. (S11):
_E
k=4Ae T (S10)

b

-E
Ink = —+ Ind
RT , (S11)

where, k was the reaction rate constant, A was an exponential factor that is a constant for
a given chemical reaction, R was the universal gas constant and T was the absolute

temperature.

0
The apparent reaction enthalpy (AHm) was calculated by the Van't Hoff equation

(S12) and by integration as in Eq. (S13):

o
dink Ay,
Aar  pr2
ar Rrr, (S12)
AHS
InKk = -——+c¢
, (S13)
where, K was the equilibrium constant and ¢ was constant.
8. The MALDI-TOF spectra of oligomers catalyzed by LiOH for 55 min at
different temperatures
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Figure S8. The MALDI-TOF spectra of oligomers catalyzed by LiOH for 55 min at different temperatures

9. Chemical structure and M, of oligomers catalyzed by LiOH

Table S1. Chemical structure and M, of oligomers catalyzed by LiOH for 55 min at different temperatures

AP B, (O M,
Entry T (°C) Ph-OH? exo/endo® PDI®
(%) (%) (%) (gmolP
1 150 1.62 1.16 56.67 2271 20.62 1198 1.21
2 160 1.56 0.67 5532 2291 21.77 1354 1.32
3 170 1.66 0.68 50.00 28.87 21.13 1359 1.36
4 180 1.53 0.78 42.55 3987 17.57 1259 1.27

@ determined by '"H NMR analysis; ® calculated from MALDI-TOF

10. Preparation of the high-performance isosorbide polycarbonate

ISB-PCs were synthesized from the transesterification oligomers through the melt
polycondensation with the removal of phenol under vacuum as shown in Table S2. It
was found that ISB-PCs cannot be obtained by NaCl and KCI because many unreacted
monomers were pumped away at high vacuum. Although KOH and NaOH exhibited

the high catalytic activity, the molecular weight of synthesized ISB-PCs was low



relatively. The probable reason was difficult to largely consume the low reactive
terminal endo-OHs during the polycondensation stage. Exo/endo of oligomers and the
molecular weight of ISB-PCs were correlated as shown in Figure S9 (pink dot data
from our previous work!®l) and listed in Table S2. The results clearly illustrated that
exo/endo of oligomer was controlled to be close 1 by activating appropriately ISB’s
exo-OH, which was advantageous to improve significantly the molecular weight of
ISB-PC. The high molecular weight beyond 36,000 g/mol was achieved by Ca(AcO),
and Mg(AcO), in this work.
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Figure S9. (a) Exo/endo of oligomers and (b) molecular weight of ISB-PCs prepared by the optimized catalysts
A number of endo-endo structure on ISB-PC molecular chain was beneficial to
improve the 7,.[-1% In this study, it was found that the reactivity of ISB’s endo-OH
catalyzed by LiCl, Ca(AcO),, Mg(AcO), and Zn(AcO), was much higher than exo-OH
resulted from a large ratio of exo/endo in the oligomer, thereby increasing the endo-
endo content (a;/a; > 1) to improve the T, of high-molecular-weight ISB-PC as shown
in Table S2. The low T, of ISB-PC catalyzed Zn(AcO), was probably attributed to the
hydrolysis of ISB moiety during the prolonged transesterification reaction.[”-!1.12]

Table S2. Molecular weight, chemical structure and thermal property of ISB-PCs

Conversion of

Entry Catalyst exo/endo? -OH a; a/a; (7] M, (g/mol) T, (°C)
DPC (%)
1 KOH 0.64 99.1 0.05 0.48 0.87 26.41 13,100 128
2 NaOH 0.65 99.1 0.04 0.47 0.96 31.84 16,500 154
3 LiOH 0.66 99.1 0.02 0.45 0.98 39.90 21,700 155
4 Ca(AcO), 0.86 98.9 0.01 0.49 1.05 64.90 39,200 166

5 Mg(AcO), 1.16 98.5 0.01 0.49 1.07 60.62 36,100 167




6 Zn(AcO), 4.38 95.1 0.02 0.52 1.02 42.77 23,600 162

7 KCl1 3.68 61.8 - - - - - -
8 NaCl 59.30 55.1 - - - - - -
9 LiCl 3.50 82.1 0.02 0.48 1.10 42.90 23,700 170

2 data of transesterification oligomers taken from Table 3; ® calculated by HPLC after 145 min of transesterification
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