## **Supporting Information**

### Tunable hydantoin and base binary organocatalysts in ring-opening polymerizations

Lei Zhang, Zikun Luo, Zhenjiang Li, Chan Zhang, Rui Yan, Jie Li, Bo Liu, Yongzhu Hu, Fangyuan Zhou, Kai Guo\* State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

Email: guok@njtech.edu.cn; zjli@njtech.edu.cn.

# Contents

| <sup>1</sup> H NMR spectrum (CDCl <sub>3</sub> , 400 MHz) of 3,5,5-trimethylhydantoin S1     |
|----------------------------------------------------------------------------------------------|
| <sup>13</sup> C NMR spectrum (CDCl <sub>3</sub> , 100 MHz) of 3,5,5-trimethylhydantoinS2     |
| <sup>1</sup> H NMR spectrum (DMSO, 400 MHz) of 3-methyl-5,5-diphenylhydantoinS3              |
| <sup>13</sup> C NMR spectrum (DMSO, 100 MHz) of 3-methyl-5,5-diphenylhydantoinS3             |
| <sup>1</sup> H NMR spectrum (DMSO, 400 MHz) of 3-methyl-5,5-diphenyl-2-thioxoimidazo-        |
| lindin-4-oneS4                                                                               |
| <sup>13</sup> C NMR spectrum (DMSO, 100 MHz) of 3-methyl-5,5-diphenyl-2-thioxoimidazo-       |
| lindin-4-oneS5                                                                               |
| <sup>1</sup> H NMR spectrum (DMSO, 400 MHz) of 3,5-dimethyl-2-thioxoimidazolidin-4-oneS6     |
| <sup>13</sup> C NMR spectrum (DMSO, 100 MHz) of 3,5-dimethyl-2-thioxoimidazolidin-4-oneS6    |
| MALDI-ToF MS spectrum of the PLA catalyzed by HHyd2/DBUS7                                    |
| MALDI-ToF MS spectrum of the PLA catalyzed by HHyd3/DBUS7                                    |
| <sup>1</sup> H NMR spectra (CDCl <sub>3</sub> , 400 MHz) of poly (L-lactide)S8               |
| <sup>13</sup> C NMR spectra (CDCl <sub>3</sub> , 100 MHz) of poly (L-lactide)S8              |
| <sup>1</sup> H NMR spectra (CDCl <sub>3</sub> , 400 MHz) of poly(δ-valerolactone)S9          |
| MALDI-ToF MS spectrum of the PVL catalyzed by HHyd2/DBU                                      |
| <sup>1</sup> H NMR spectra (CDCl <sub>3</sub> , 400 MHz) of poly(ε-caprolactone)S10          |
| MALDI-ToF MS spectrum of the PCL catalyzed by HHyd2/DBUS10                                   |
| <sup>1</sup> H NMR spectra (CDCl <sub>3</sub> , 400 MHz) of PTMCS11                          |
| <sup>1</sup> H NMR spectra (CDCl <sub>3</sub> , 400 MHz) of PTMC and PTMC- <i>b</i> -PLLAS11 |
| SEC traces of PTMC and PTMC-b-PLLAS12                                                        |
| <sup>1</sup> H NMR spectra (CDCl <sub>3</sub> , 400 MHz) of HHyd2, DBU, HHyd2/DBUS12         |
| <sup>1</sup> H NMR spectra (DMSO, 400 MHz) of benzyl alcohol in mixtures with HHyd2/DBU S13  |
| <sup>13</sup> C NMR spectra (DMSO, 100 MHz) of TMC in mixtures with HHyd2/DBUS13             |
| Ring-opening polymerization of TMC with different catalysisS14                               |
| Ring-opening polymerization of TMC with different solventsS14                                |
| ReferencesS15                                                                                |

#### Preparation of 3,5,5-trimethylhydantoin (HHyd3)

3,5,5-Trimethylhydantoin<sup>1</sup> was prepared by literature procedures. 5,5dimethylhydantoin (1.00 g, 7.80 mmol) and equimolar of  $K_2CO_3$  (1.10 g, 7.80 mmol) was added in 6 mL EtOH, the mixture was stirred for 0.5 h at room temperature. CH<sub>3</sub>I (1.11 g, 7.80 mmol) was added dropwise and the mixture stirred for additional 2 h at room temperature. Then the temperature was increased to 60 °C and the mixture was stirred for 3 h. The solvent was evaporated under reduced pressure and the residue dissolved in 4 mL H<sub>2</sub>O. Extraction with ethyl acetate (3 x 4 mL), drying over Na<sub>2</sub>SO<sub>4</sub> overnight and evaporation of the solvent at reduced pressure afforded the product as a white solid. Yield 86%.



Figure S1. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of 3,5,5-trimethylhydantoin (HHyd3)



Figure S2. <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>, 100 MHz) of 3,5,5-trimethylhydantoin (HHyd3)

#### Preparation of 3-methyl-5,5-diphenylhydantoin (HHyd4)



3-Methyl-5,5-diphenylhydantoin<sup>2</sup> was prepared by literature procedures. 5,5-diphenylhydantoin (6.30 g, 25.0 mmol) and equimolar of KOH (1.40 g, 25.0 mmol) was added in 25 mL EtOH, the mixture was stirred for 0.5 h at 95°C.  $CH_3I$  (1.56 ml, 25.0 mmol)

was added dropwise and the mixture stirred for additional 5 h at room temperature. The solvent was extracted with ethyl acetate and  $H_2O$ , drying over  $Na_2SO_4$  overnight and evaporation of the solvent at reduced pressure afforded the product as a white solid. Yield 54%.



Figure S3. <sup>1</sup>H NMR spectrum (DMSO-d6, 400 MHz) of 3-methyl-5,5-diphenylhydantoin (HHyd4)



Figure S4. <sup>13</sup>C NMR spectrum (DMSO-d6, 100 MHz) of 3-methyl-5,5-diphenylhydantoin (HHyd4)

#### Preparation of 3-methyl-5,5-diphenyl-2-thioxoimidazolidin-4-one (HHyd5)



3-Methyl-5,5-diphenyl-2-thioxoimidazolidin-4-one<sup>3</sup> was prepared by literature procedures. 5,5-diphenyl-2-thioxoimidazolidin-4-one (6.71 g, 25.0 mmol) and equimolar of KOH (1.40 g, 25.0 mmol) was added in 25 mL EtOH, the mixture was stirred for 0.5 h at 95°C. CH<sub>3</sub>I

(1.56 ml, 25.0 mmol) was added dropwise and the mixture stirred for additional 5 h at room temperature. The solvent was extracted with ethyl acetate and  $H_2O$ , drying over  $Na_2SO_4$  overnight and evaporation of the solvent at reduced pressure. The product as a yellow solid was afforded by chromatographic column chromatography (PE: EA=5:1). Yield 38%.







Figure S6. <sup>13</sup>C NMR spectrum (DMSO-d6, 100 MHz) of 3-methyl-5,5-diphenyl-2-thioxoimidazolindin-4-one (HHyd5)

#### Preparation of 3,5-dimethyl-2-thioxoimidazolidin-4-one (HHyd6)

3,5-Dimethyl-2-thioxoimidazolidin-4-one<sup>4</sup> was prepared by literature procedures. A mixture of 20 mmol of alanine, 1.8 g of ammonium thiocyanate (23 mmol), 20 mL of acetic anhydride, and 3 mL of acetic acid was stirred for 1 h at 100 °C. The solution was poured into water, and the precipitate was filtered off. The crude I-acetyI-2-thiohydantoin was suspended in 30 mL of 10% hydrochloric acid (m/m) and refluxed for 1 h. The solution was cooled and allowed to stand at 4 °C overnight. The precipitated crystalline material was filtered off and washed with water. 5-methyl-2-thioxoimidazolidin-4-one (3.25 g,

25.0 mmol) and equimolar of KOH (1.40 g, 25.0 mmol) was added in 25 mL EtOH, the mixture was stirred for 0.5 h at 95°C. CH<sub>3</sub>I (1.56 ml, 25.0 mmol) was added dropwise and the mixture stirred for additional 5 h at room temperature. The solvent was extracted with ethyl acetate and H<sub>2</sub>O, drying over Na<sub>2</sub>SO<sub>4</sub> overnight and evaporation of the solvent at reduced pressure. The product as a yellow solid was



afforded by chromatographic column chromatography (PE: EA=5:1). Yield 15%.

Figure S7. <sup>1</sup>H NMR spectrum (DMSO-d6, 400 MHz) of 3,5-dimethyl-2-thioxoimidazolidin-4-one

(HHyd6)



Figure S8. <sup>13</sup>C NMR spectrum (DMSO-d6, 100 MHz) of 3,5-dimethyl-2-thioxoimidazolidin-4-one

(HHyd6)



Figure S9. MALDI-ToF MS spectrum of the PLA catalyzed by HHyd3/DBU.



Figure S10. MALDI-ToF MS spectrum of the PLA catalyzed by HHyd2/DBU.







Figure S12. <sup>13</sup>C NMR spectrum of PLLA initiated from BnOH in CDCl<sub>3</sub>(HHyd2/DBU)



Figure S13. <sup>1</sup>H NMR spectrum of PVL initiated from BnOH in CDCl<sub>3</sub>, asterisk refers to the residual grease in polymers.



Figure S14. MALDI-ToF MS spectrum of the PVL catalyzed by HHyd2/DBU.



Figure S15. <sup>1</sup>H NMR spectrum of PCL initiated from BnOH in CDCl<sub>3</sub>, asterisk refers to the residual grease in polymers.



Figure S16. MALDI-ToF MS spectrum of the PCL catalyzed by HHyd2/DBU.



Figure S17. <sup>1</sup>H NMR spectrum of PTMC initiated from BnOH in CDCl<sub>3</sub>.



Figure S18. <sup>1</sup>H NMR spectra of PTMC and PTMC-*b*-PLLA initiated from BnOH in CDCl<sub>3</sub>, (a) a first ROP of TMC by HHyd2/DBU; (b) a second ROP of LLA by postpolymerization.



Figure S19. SEC traces of first poly(trimethylene carbonate) (PTMC) (solid line) and poly(trimethylene carbonate)-*block*-poly(L-lactide) (PTMC-*b*-PLLA) (dashed line) (eluent, THF; flow rate, 0.7 mL min<sup>-1</sup>).



Figure S20. <sup>1</sup>H NMR spectra of hydantoin (HHyd2, in red), DBU (in brown), and a stoichiometric mixture of HHyd2/DBU (in blue). N3-H of hydantoin, originally resonances at 10.75 ppm, was abstracted by DBU, shifted to 7.31 ppm in DBUH<sup>+</sup> (all in DMSO- $d_6$ ).



Figure S21. The chemical shifts of methylene protons of benzyl alcohol in mixtures with HHyd2/DBU in DMSO- $d_6$  (1) BnOH (2) HHyd2/DBU/BnOH = 0.5/0.5/1 (3) HHyd2/DBU/BnOH = 1/1/1 (4) HHyd2/DBU/BnOH = 2/2/1



Figure S22. Chemical shifts of carbonyl carbon of TMC in <sup>13</sup>C NMR spectra observed in mixtures with HHyd/DBU in DMSO- $d_6$ . (1) TMC (2) HHyd2/DBU/TMC = 0.5/0.5/1 (3) HHyd2/DBU/TMC = 1/1/1 (4) HHyd2/DBU/TMC = 2/2/1

| Entry | Catalysis       | time | conv. <sup>b</sup> | $M_{n,calc.}^{c}$ | M <sub>n,NMR</sub> . <sup>b</sup> | $M_{n,GPC}{}^d$ | Đ    |
|-------|-----------------|------|--------------------|-------------------|-----------------------------------|-----------------|------|
|       |                 | (h)  | (%)                | (kg mol⁻¹)        | (kg mol⁻¹)                        | (kg mol⁻¹)      |      |
| 1     | HHyd1/DIEA      | 6    | 3                  | -                 | _                                 | -               | -    |
| 2     | HHyd1/sparteine | 6    | 20                 | -                 | -                                 | -               | -    |
| 3     | HHyd1/DBU       | 6    | 93                 | 3.0               | 3.2                               | 3.5             | 1.20 |
| 4     | HHyd3/DIPEA     | 6    | -                  | -                 | -                                 | -               | -    |
| 5     | HHyd3/pyridine  | 6    | 10                 | -                 | -                                 | -               | -    |
| 6     | HHvd3/sparteine | 6    | 23                 | _                 | _                                 | _               | _    |

Table S1 Ring-opening polymerization of TMC with different catalysis<sup>a</sup>

 ${}^{a}$ [M]<sub>0</sub>:[I]<sub>0</sub>:[HHyd]:[Base] = 30:1:1:1; room temperature; solvent, DCM; [M]<sub>0</sub> = 3 mol L<sup>-1</sup>. <sup>b</sup>Determined by <sup>1</sup>H NMR in CDCl<sub>3</sub>. <sup>c</sup>Calculated from ([M]<sub>0</sub>/[I]<sub>0</sub>) × conv. × (M<sub>w</sub> of TMC) + (M<sub>w</sub> of BnOH). <sup>d</sup>Determined by SEC in THF using absolute method of measurement (dn/dc = 0.042).

Table S2 Ring-opening polymerization of TMC with different solvents <sup>a</sup>

| Entry          | solvent    | time | conv. <sup>b</sup> | $M_{n,calc.}$ <sup>c</sup> | M <sub>n,NMR</sub> . <sup>b</sup> | $M_{n,GPC}^{d}$         | Đ    |
|----------------|------------|------|--------------------|----------------------------|-----------------------------------|-------------------------|------|
|                |            | (h)  | (%)                | (kg mol <sup>−1</sup> )    | (kg mol⁻¹)                        | (kg mol <sup>−1</sup> ) |      |
| 1              | $CH_2CI_2$ | 6    | 92                 | 2.9                        | 2.6                               | 2.8                     | 1.13 |
| 2              | THF        | 6    | 80                 | 2.5                        | 2.9                               | 2.7                     | 1.16 |
| 3              | Toluene    | 6    | 76                 | 2.4                        | 3.0                               | 2.8                     | 1.18 |
| 4 <sup>e</sup> | -          | 0.5  | 97                 | 3.1                        | 3.0                               | 3.2                     | 1.12 |

 ${}^{o}$ [M]<sub>0</sub>:[I]<sub>0</sub>:[HHyd]:[Base] = 30:1:1:1; room temperature; solvent, DCM; [M]<sub>0</sub> = 3 mol L<sup>-1</sup>. <sup>b</sup>Determined by <sup>1</sup>H NMR in CDCl<sub>3</sub>. <sup>c</sup>Calculated from ([M]<sub>0</sub>/[I]<sub>0</sub>) × conv. × (M<sub>w</sub> of TMC) + (M<sub>w</sub> of BnOH). <sup>d</sup>Determined by SEC in THF using absolute method of measurement (dn/dc = 0.042). <sup>e</sup>Temperature, 60°C, bulk.

References for SI.

- 1. B. W. McCann, H. Song, H. B. Kocer, I. Cerkez, O. Acevedo and S. D. Worley, J. Phys. Chem. A, 2012, 116, 7245-7252.
- 2. N. Trisovic, N. Valentic and G. Uscumlic, Chem. Cent. J., 2011, 5.
- 3. A. O. Yuce, E. Telli, B. D. Mert, G. Kardas and B. Yazici, J. Mol. Liq., 2016, 218, 384-392.
- 4. J. Marton, J. Enisz, S. Hosztafi and T. Timar, J. Agric. Food Chem., 1993, 41, 148-152.