Supporting Information

Blue LED-light activated RAFT polymerization of PEG acrylate with high chain end fidelity for efficient PEGylation

Alicia Rasines Mazo, ^a Thi Nga Tran, ^b Wenhao Zhang, ^b Yuwen Meng, ^b Amin Reyhani, ^a Sagrario Pascual,

^b Laurent Fontaine, ^b Greg Qiao, ^{a*} and Sandie Piogé ^{b*}

^aPolymer Science Group, The University of Melbourne, Department of Chemical and Biomolecular

Engineering Melbourne, 3010 (Australia)

^bInstitut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av O. Messiaen,

72085 Le Mans Cedex 9 (France)

Fig. S 1. Overlaid SEC (THF) traces of PPEGA using RI detection obtained by UV-light-initiated RAFT polymerization of PEGA mediated through COPYDC ([PEGA]₀/[COPYDC]₀ = 50/1), without initiator, in DMF ([PEGA]₀ = 42 wt %) at room temperature and at different conversions (A). Evolution of $\ln([M]_0/[M]_1)$ (\blacktriangle) and conversion (\circ) versus time, (B) Evolution of $M_{n, SEC}^{-}$ (\blacksquare) and $M_{n, theo}^{-}$ (line) (A) and Đ (\circ) obtained by SEC (THF) versus PEGA conversion during the RAFT polymerization of PEGA (C).

Fig. S 2. Overlaid SEC (THF) traces of PPEGA using RI detection (—) and UV detection at 310 nm (---) obtained by UV-light-initiated RAFT polymerization of PEGA mediated through Irgacure 2959 and COPYDC at final time. ([PEGA]₀/[COPYDC]₀/[Irgacure]₀ = 50/1/0.1) in DMF at room temperature at [PEGA]₀ = 42 wt %.

Fig. S 3. (A) Evolution of $\ln([M]_0/[M]_t)$ (\blacktriangle) and conversion (\circ) *versus* time, (B) Evolution of $M_{n, SEC}^-$ (•) and $M_{n, theo}^-$ (line) (A) and \mathcal{D} (\circ) obtained by SEC (THF) *versus* PEGA conversion during the blue LED-light initiated RAFT polymerization of PEGA mediated through COPYDC in DMF at room temperature ([PEGA]_0/[COPYDC]_0 = 50/1, [PEGA]_0 = 67 wt %).

Fig. S 4. Overlaid SEC (THF) traces of PPEGA using RI detection obtained by Blue LED-light initiated RAFT polymerization of PEGA mediated through COPYDC ($[PEGA]_0/[COPYDC]_0 = 50/1$) in DMF at room temperature at $[PEGA]_0 = 67$ wt %.

Fig. S 5. ¹H NMR spectrum (400 MHz, CDCl₃) of Blue-LED-PPEGA₁₈ synthesized by Blue LED-lightinitiated RAFT polymerization of PEGA with COPYDC ([PEGA]₀/[COPYDC]₀ = 20/1, [PEGA]₀ = 67 wt %) in DMF at room temperature. Overlaid SEC traces (DMF) traces of purified Blue-LED-PPEGA₁₈ (Table S1, entry 3) using RI detection (line) and UV-vis detection (dash line) at 309 nm obtained by Blue LED-light initiated RAFT polymerization of PEGA and COPYDC ([PEGA]₀/[COPYDC]₀ = 20/1, [PEGA]₀ = 67 wt %)).

Fig. S 6. Q-TOF Analysis of commercial oligo(ethylene glycol) acrylate PEGA monomer.

Fig. S 7. ¹H NMR spectrum (400 MHz, CDCl₃) of purified Blue-LED-PPEGA₁₈-*b*-PNIPAM₁₈₁ (Table S1, entry 6) synthesized by chain extension of Blue-LED-PPEGA₁₈ with NIPAM. The polymerization was mediated by Blue-LED-PPEGA₁₈ and initiated by LAP such that $[NIPAM]_0/[PPEGA_{18}]_0/[LAP]_0 = 204/1/0.3$ in water at 25 wt%.

Fig. S 8. RI SEC trace evolution (DMF+LiBr) of chain extension experiments with $[NIPAM]_0/[PPEGA_{18}]_0/[I]_0 = 204/1/0.1$ activated using a thermal RAFT polymerization and ACVA as initiator (70°C) process at 2.4% wt % (A); and irradiated by UV-light using Irgacure 2959 as initiator at room temperature (B).

Fig. S 9. Overlaid ¹H NMR spectra (400 MHz, d₆-DMSO) of P(ZLL-co-DLV)-lys-N₃ (front) and P(ZLL*co*-DLV)-*g*-PPEGA₂₆ (back)

TABLE S1. Macromolecular characteristics of PPEGAs and PPEGA-b-PNIPAMs synthesized by RAFT polymerization.

PEGA polymerization carried out at 42 wt. %. The extension was carried out in water ([NIPAM]₀/[PPEGA]₀/[I]₀ = 204/1/0.3 at (A) 2.4 wt% or (B) 25 wt%).

Entry	Target compound	[PEGA] ₀ /[COPYDC or PPEGA] ₀ /[I] ₀	Initiator (I)	T (°C)	Time (h)	Conv. (%) ^a	DP _{n,PEGA,NMR} ^b	M _{n,theo} c (g.mol ⁻¹)	M _{n,SEC} ^d (g.mol ⁻¹)	Ðď
1	Thermal-PPEGA ₂₀	50/1/0.1	ACVA	70	2	42	20	10040	8500	1.23
2	UV-PPEGA ₂₀	50/1/0.1	Irgacure 2959	R.T.	1.45	35	18	9080	8500	1.25
3	Blue-PPEGA ₂₀	20/1/		R.T	45	89	18	9080	9700	1.16
		Initiating source				Conv. (%) ^e	DP _{n,NIPAM,NMR} f	M _{n,theo} ^g (g.mol ⁻¹)	M _{n,SEC} ^h (g.mol ⁻¹)	Ð ^h
4 ^A	Thermal-PPEGA ₂₀ - <i>b</i> - PNIPMAM ₂₀₄	Temperature	V50	70	6	99	200	32640	41200	1.56
5^	UV-PPEGA ₁₈ - <i>b</i> -PNIPAM ₂₀₄	UV-light irradiation	Irgacure 2959	R.T.	1.05	98	201	31793	56400	1.34
6 ^B	Blue-PPEGA ₁₈ -b-PNIPAM ₂₀₄	Blue-LED irradiation	LAP	R.T.	22	91	181	29560	66900	1.21

^a Determined by ¹HNMR spectroscopy (400 MHz, CDCl₃) by comparing the integration values of the formamide proton of DMF at 8.02 ppm and of the alkene protons of PEGA between 5.7 and 6.5 ppm. ^b Determined by ¹HNMR spectroscopy (400 MHz, CDCl₃) by comparing the integration values of the methyl protons SCH₂(CH₂)₁₀CH₃ of the dodecyl chains (3 protons) with the methyl protons $C(=O)OCH_2CH_2O(CH_2CH_2O)_8CH_3$ (3n protons) and the methylene protons HC=CCH₂NH (2 protons). $DFCA_1$

$$M_{n,theo} = \frac{[PEGA]_0}{[COPYDC]_0} \times conv \times M_{PEGA} + M_{COPYE}$$

 $M_{A} + M_{COPYDC}$ where conv is the conversion determined by ¹H NMR spectroscopy, M_{PEGA} is the number-average molar mass of PEGA (M_{n} , = 480 g.mol⁻¹) and M_{COPYDC} =

440 g.mol-1.

^d Determined by SEC in THF using PS equivalents.

^e Determined by ¹H NMR spectroscopy (400 MHz, CDCl₃) by comparing the integration values of the formamide proton of DMF at 8.02 ppm and of the alkene protons of NIPAM between 5.7 and 6.5 ppm. ^f Determined by ¹H NMR spectroscopy (400 MHz, CDCl₃) by comparing the integration values of the methyl protons ((CH₂CH₂O)₈CH₃ of the PEGA chains (3n protons) with the methine protons (-NH-CH(CH₃)₂ of PNIPAM (1) after subtraction of the methylene protons belonging to PPEGA.

$${}_{g}M_{n, theo} = \frac{[NIPAM]_{0}}{[PPEGA]_{0}} \times conv \times M_{NIPAM} + M_{n,PPEGA}$$
 where conv is the conversion determined by ¹H NMR spectroscopy, M_{NIPAM} is the molar mass of NIPAM and $M_{n, PPEGA}$ is the number-average molar mass of

PPEGA.

^g Determined by SEC in DMF using PMMA equivalents.