Supporting Information

Dynamic polyurethane thermosets: tuning associative/dissociative behavior by catalyst selection

Fermin Elizalde1,*, Robert H. Aguirresarobe1, Alba Gonzalez1, Haritz Sardon1,*

1 POLYMAT, University Of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia---San Sebastian, Spain

1. FT-IR characterization and representative images
2. Stress-relaxation measurements
3. DMTA measurements
4. 1H-NMR characterization for aromatic model urethane reactions
5. MALDI-TOF characterization
6. Model Urethane Compounds: 1H-NMR characterization
7. Model Diurethane Compounds: 1H-NMR characterization
1. FT-IR characterization and representative images

**Figure S1.** Representative FTIR spectra of the reaction of PPG triol (Mn=3740 g/mol) with MDI at t=0min (black trace) and t=300 min (pre-polymer formation, red trace). Blue trace corresponds to the final polyurethane film cross-linked for 24h at 70°C with 1,6-Hexanediol.

**Figure S2.** A) Aromatic polyurethane film cross-linked without catalyst. B) Aromatic polyurethane film cross-linked with DBTDL. C) Aromatic polyurethane film cross-linked with PTSA D) Aromatic polyurethane film cross-linked with TBD.
2. Stress-relaxation measurements

Figure S3. Stress-relaxation measurements for aliphatic (HDI) polyurethanes cross-linked with 2% and 6% of DBTDL performed at 120°C.

Figure S4. Stress-relaxation measurements for aromatic (MDI) polyurethanes cross-linked with 2% and 6% of DBTDL performed at 120°C.
3. DMTA measurements

![Figure S5](image-url)

**Figure S5.** DMTA measurements for aromatic (MDI) polyurethanes cross-linked with 2% of DBTDL (red) and 2% of PTSA (blue) performed at 120°C.
4. $^1$H-NMR for alcohol mediated transcarbamoylation aromatic model reactions

Figure S6. $^1$H-NMR measurements for aromatic polyurethane model reactions catalyzed with 2% of DBTDL performed at 110°C (A), 120°C (B), 130°C (C) and 140°C (D).

Figure S7. $^1$H-NMR measurements for aromatic polyurethane model reactions catalyzed with 2% of p-TSA performed at 110°C (A), 120°C (B), 130°C (C) and 140°C (D).
5. MALDI-TOF characterization

In this part, the MALDI-TOG characterization of every synthesized model diurethane compound employed for the study of the dissociative transcarbamoylation exchange is shown. The MALDI-TOF spectrum of the employed DCTB matrix is shown also.

*DCTB Matrix*

![DCTB Matrix](image)

**Figure S8.** Characterization by MALDI-TOF of the employed DCTB matrix.

Most relevant signals corresponding to DCTB Matrix: 409.056, 430.589, 459.233, 500.253, 523.248, 526.483, 554.514, 619.496 and 685.403.
**Figure S9.** Characterization by MALDI-TOF of Didodecyl hexane-1,6-diyl dicarbamate (D-HDI-D).

**Figure S10.** Characterization by MALDI-TOF of Dihexyl hexane-1,6-diyl dicarbamate (H-HDI-H).
Figure S11. Characterization by MALDI-TOF of Didodecyl (methylenebis(4,1-phenylene))dicarbamate (D-MDI-D).

Figure S12. Characterization by MALDI-TOF of Dihexyl (methylenebis(4,1-phenylene))dicarbamate (H-MDI-H).
6. Model Urethane Compounds: $^1$H-NMR characterization

Dodecyl hexyl carbamate

$^1$H NMR (300 MHz, Chloroform-d) δ 4.61 (s, 1H), 4.06 (td, $J = 6.7$, 0.0 Hz, 2H), 3.18 (q, $J = 6.7$ Hz, 2H), 1.71 – 1.58 (m, 4H), 1.49 (q, $J = 7.0$ Hz, 2H), 1.31 (dd, $J = 8.3$, 0.0 Hz, 22H), 1.02 – 0.77 (m, 6H).

Figure S13. $^1$H-NMR spectra of dodecyl hexyl carbamate.
Dodecyl p-tolyl carbamate

Figure S14. $^1$H-NMR spectra of dodecyl p-tolyl carbamate.

$^1$H NMR (300 MHz, Chloroform-$d$) $\delta$ 7.37 – 7.19 (m, 2H), 7.13 (d, $J = 8.3$ Hz, 2H), 6.51 (s, 1H), 4.17 (t, $J = 6.7$ Hz, 2H), 2.33 (s, 3H), 1.76 – 1.62 (m, 2H), 1.29 (m, $J = 5.2$ Hz, 18H), 0.98 – 0.83 (m, 3H).
7. Model diurethane compounds: $^1$H-NMR characterization

Didodecyl hexane -1,6- diyl dicarbamate

Figure S15. $^1$H-NMR spectra of didodecyl hexane -1,6- diyl dicarbamate.

$^1$H NMR (300 MHz, Chloroform-d) δ 4.65 (s, 2H), 4.06 (t, $J =$ 6.7 Hz, 4H), 3.18 (q, $J =$ 6.6 Hz, 4H), 1.61 (d, $J =$ 6.0 Hz, 8H), 1.51 (t, $J =$ 6.6 Hz, 2H), 1.42 – 1.16 (m, 38H), 0.97 – 0.81 (m, 6H).
Dihexyl hexane -1,6- diyl dicarbamate

Figure S16. $^1$H-NMR spectra of dihexyl hexane -1,6- diyl dicarbamate.

$^1$H NMR (300 MHz, Chloroform-d) $\delta$ 4.67 (s, 2H), 4.06 (t, $J = 6.7$ Hz, 4H), 3.18 (q, $J = 6.6$ Hz, 4H), 1.72 – 1.55 (m, 4H), 1.51 (t, $J = 6.6$ Hz, 4H), 1.43 – 1.22 (m, 16H), 0.98 – 0.81 (m, 6H).
Didodecyl (methylenebis(4,1-phenylene)) dicarbamate

Figure S17. $^1$H-NMR spectra of didodecyl (methylenebis(4,1-phenylene)) dicarbamate.

$^1$H NMR (300 MHz, Chloroform-d) δ 7.38 – 7.25 (m, 4H), 7.12 (d, $J = 8.4$ Hz, 4H), 6.53 (s, 2H), 4.16 (t, $J = 6.7$ Hz, 4H), 3.91 (s, 2H), 1.67 (q, $J = 7.0$ Hz, 4H), 1.29 (m, $J = 4.6$ Hz, 36H), 0.99 – 0.82 (m, 6H).
Dihexyl (methylenebis(4,1-phenylene)) dicarbamate

Figure S18. $^1$H-NMR spectra of dihexyl (methylenebis(4,1-phenylene))dicarbamate.

$^1$H NMR (300 MHz, Chloroform-$d$) δ 7.39 – 7.27 (m, 4H), 7.20 – 7.01 (m, 4H), 6.53 (s, 2H), 4.17 (t, $J = 6.7$ Hz, 4H), 3.91 (s, 2H), 1.67 (dt, $J = 8.0$, 6.5 Hz, 4H), 1.48 – 1.18 (m, 12H), 0.92 (td, $J = 6.9$, 5.7, 2.9 Hz, 6H).