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The experimental details

1. Preparation of the hydrogel PDG

The mixture of SPA (8.7 mg, 9 x 103 mmol) and DTB (1.30 mg, 3 x 103 mmol) were added into a
binary solution of DMSO and H,O (v/v, 1:1, 200 pL), the mixture solution was heated dissolve and
completely dissolved, then cooled it to room temperature, obtaining stable bi-components hydrogel
PDG.

2. Characterization of FT-IR spectra

Infrared spectra were recorded using a FT-IR spectrometer with KBr discs in the 4000-500 cm™! region.
The solid powder of SPA, DTB, PDG, PDG-Fe, PDG-Fe + H,PO4, PDG-Cr, PDG-Cr + CN- and
PDG-Pb were prepared by drying resulting gels on glass slices for a long time. All the samples were
mixed well-distributedly with KBr to create compact pellets for the FT-IR detection.

3. Characterization of scanning electron microscopy (SEM)

The SEM images were performed on a JSM-6701F FE-SEM microscope. We prepared powder of SPA,
xerogel PDG and xerogel PDG-M using pure organic solvents. A SEM sample was fabricated by
spreading the solid powder on conductive plastic. Then gold powder was sprayed on the sample after
the detection system was vacuumed. The SEM image of the solid powder was determined with an

accelerating voltage of 8 kV.

4. The experimental details about the fluorescent titrations:

All the fluorescence spectroscopy was carried out in DMSO/H,0 (v/v, 1:1, 200 pL) binary solution on
a Shimadzu RF-5301 spectrometer. With different equivalents of cations were added into PDG (9.0 x
10-6 mol, 4.5 x 102 mol/L) while keeping the host concentration constant (4.54 x 102 mol/L) in all the
experiments. The detection limits for ions were determined by fluorescent titrations and calculated on
the basis of 36/s method.

For example, adding 0.01 equivalent Fe** aqueous solution to PDG (9.0 x 10-¢ mol, 4.5 x 102 mol/L),
and make Fe** diffused uniformly by heating dissolution. The stable metallogel was formed after cooled
for one minute, and fluorescence intensity of PDG-Fe was measured on spectrometer. Increasing the
amount of Fe3" until the fluorescence of PDG was completely quenched, and reached the fluorescence
titration endpoint. As a result, upon the addition of Cr3* (13.5 x 10 mol, 67.5 mmol/L), Pb>" (3.6 x
10-° mol, 18.0 mmol/L) and Fe3* (4.5 x 10 mol, 22.5 mmol/L) into PDG respectively, the fluorescence
emission of PDG could be quenched. Meanwhile, the obtained coordinated metallogel was named as

PDG-Cr and PDG-Fe. Next, we study the successive fluorescence response properties of PDG-Cr and
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PDG-Fe to CN- and H,PO,. CN- and H,PO4 were gradually added to PDG-Cr and PDG-Fe,
respectively. As aresult, CN-(16.2 x 10 mol, 81.0 mmol/L) and H,PO, (15.3 x 10-* mol, 76.5 mmol/L)
could induce the PDG-Cr and PDG-Fe to emit white fluorescence again.

5. The film preparation experiments (such as PDG and PDG-Cr):

The PDG-based film was prepared by pouring heated DMSO-H,O solution of PDG onto a clean glass
surface and then drying in air. As shown in Fig. 7, the PDG film showed white fluorescence emission
under UV (365 nm) light. When Cr3* aqueous solution was added to PDG, the fluorescence of PDG
disappeared instantly. In addition, when aqueous solution of CN- was added, the fluorescence of PDG-
Cr could be effectively restored.

6. Calculation formula of association constants (K,)

log -l logKa + nlog[D]

max

K,=1.16 x 10*

I is the observed fluorescence intensity of SPA at the fixed concentrations of DTB. I, and I,

are the corresponding maximum and minimum, respectively. [D] is the corresponding concentration of

DTB.

Materials and methods

Fresh doubly distilled water was used throughout the experiment. All chemicals were purchased
from commercial suppliers and used without further purification unless otherwise noted. All
anions and cations were purchased from Alfa Aesar and used as received. '"H NMR (600 MHz
or 400 MHz) and '3C NMR spectra (151 MHz) were carried out with a Mercury-600 BB
spectrometer. High-resolution mass spectra were performed on Bruker Esquire 3000 plus mass
spectrometer equipped with ESI interface and ion trap analyzer. The infrared spectra were
performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points
were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra
were recorded on a Shimadzu RF-5301PC spectrofluorophotometer. The morphologies and
sizes of the xerogels were characterized using field emission scanning electron microscopy (FE-

SEM, JSM-6701F) at an accelerating voltage of 8 kV.
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Scheme S1 Synthesis of S, SP and SPE.

1. Synthesis of compound S

1-((6-bromohexyl)oxy)-4-methoxybenzene (S): 4-methoxyphenol (2.48 g, 20 mmol), K,CO; (8.28 g,
60 mmol), KI (9.96 g, 60 mmol), 1, 6-dibromohexane (14.52 g, 60 mmol) and acetone (400 mL) were
added into a 500 mL round-bottom flask. The mixture was heated reflux at 60 °C for 3 days. After the
reaction completed, the solid was filtered off and the solvent was removed. Column chromatography
(petroleum ether : ethyl acetate = 20 : 1) afforded a white solid S (4.83 g, 85%), m. p.: 85-87 °C. 'H
NMR (400 MHz, CDCls) (Fig. S1) 8 (ppm): 6.82 (s, 4H, ArH), 3.92-3.89 (t,J = 6.0 Hz, 2H, CH,), 3.76
(S, 3H, CH3), 3.43-3.40 (t, /= 6.0 Hz, 2H, CH,), 1.90-1.86 (m, 2H, CH;), 1.79-1.75 (m, 2H, CH,), 1.52-
1.47 (m, 4H, CH,). 3C NMR (151 MHz, CDCl3) (Fig. S2) & (ppm): 153.70, 115.41, 68.36, 55.72, 33.78,
32.67,29.18, 27.92, 25.28.
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2. Synthesis of compound SP

Compound S (1.44 g, 5 mmol), 1, 4-dimethoxybenzene (3.25 g, 15 mmol) and paraformaldehyde (0.45
g, 15 mmol) were added to a solution of 1, 2-dichloroethane (250 mL). First, the mixture was stirred at
room temperature for 30 min. Then, boron trifluoride diethyl etherate (5 mL, 47.6 mmol) was added to
the solution, and stirred the mixture at 30 °C for 30 min. After the reaction completed, the reaction
mixture SP was dissolved in CHCl; (300 mL) and washed thrice with H,O (600 mL). The organic layer
was dried over anhydrous Na,SO, and evaporated to afford the crude product, which was isolated by
column chromatography using petroleum ether/dichloromethane/ethyl acetate (v/v/v =100 :25: 1) to
give SP (2.83g, 63.12%) as a white solid, m. p.: 192-194 °C. 'H NMR (Fig. S3) (400 MHz, CDCls) 6
(ppm): 6.87-6.76 (m, 10H, ArH), 3.79-3.73 (m, 37H, 5ArCH,, 90CH3;), 3.72-3.63 (m, 4H, CH,), 1.47-
1.37 (m, 2H, CH,), 1.36-1.35 (m, 2H, CH,), 1.20-1.17 (m, 2H, CH,), 0.81-0.79 (m, 2H, CH,).
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Fig. S3 'H NMR spectrum of SP in CDCl;.

3. Synthesis of compound SPE
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SP (0.449 g, 0.5 mmol), KI (0.83 g, 5 mmol) and acetonitrile (150 mL) were added into a 250 mL
round-bottom flask. The mixture was stirred at 30 °C for 30 min. Then, K,CO; (0.69 g, 5 mmol) and
Methylparaben (0.152 g, 1 mmol) were added to the round-bottom flask. The mixture was heated at
reflux under nitrogen protection at 85 °C for 12 hours. After the reaction completed, the solvent was
dried and evaporated to afford the crude product, which was isolated by column chromatography using
petroleum ether/1, 2-dichloroethane/ethyl acetate (v/v/v =100 : 25 : 1) to give SPE (0.372 g, 83%) as
a white solid, m. p.: 97-98 °C. 'H NMR (Fig. S4) (600 MHz, CDCls) & (ppm): 7.99-7.97 (d, J = 12.0
Hz, 2H, ArH), 6.86-6.85 (d, J = 12Hz, 2H, ArH), 6.76 (s, 10H, ArH), 3.98 (s, 4H, CH,), 3.77 (s, 10H,
ArH), 3.65 (s, 27H, 90CHs5), 2.16 (s, 3H, CH3), 11.54 (s, 2H, CH,), 1.24 (s, 2H, CH,). 3C NMR (Fig.
S5) (151 MHz, CDCl;) 6 (ppm): 166.88, 162.87, 150.22, 149.53, 131.54, 128.43, 122.37, 114.03,
112.84, 68.12, 55.36, 51.74, 29.84, 29.04, 26.08. ESI-MS m/z: [SPE] calcd for CsgHgsO13, 970.4503;
found 970.4500 (Fig. S6).
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Fig. S4 '"H NMR spectrum of SPE in CDCl;.
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Scheme S2 Synthesis of SPA.

4. Synthesis of compound SPA

SPE (0.097 g, 0.1 mmol) was added to a solution of NaOH (1 mol/L) aqueous solution in DMF (30
mL). The mixture was heated in a round-bottomed flask at 120 °C for 12 h. Then filtered under reduced
pressure and the residue were recrystallized in ethanol and water to give a white solid SPA (0.0874,
90%), m. p.: 111-112 °C. 'H NMR (Fig. S7) (600 MHz, DMSO-dg) & (ppm): 12.55 (s, 1H, OH),7.86-
7.85 (d, J=6.0 Hz, 2H, ArH), 6.98-6.96 (d, J= 12 Hz, 2H, ArH), 6.74-6.78 (t, /= 6.0 Hz, 10H, ArH),
4.00-3.98 (t,J=6 Hz, 2H, CH,), 3.81-3.79 (t,J= 6 Hz, 2H, CH,), 3.63-3.62 (m, 37H, 5ArCH,, 9OCH3),
1.73-1.68 (m, 4H, CH,), 1.50-1.42 (m, 4H, CH,). 3C NMR (Fig. S8) (151 MHz, CDCl3) & (ppm):
162.69, 150.14, 132.16, 131.53, 128.42, 128.31, 119.66, 114.10, 112.92, 109.99, 68.15, 55.46, 55.25,
36.44, 31.43, 29.15, 26.04. ESI-MS m/z: [SPA] calcd for Cs;Hg4O13, 956.4347; found 956.4325 (Fig.
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Fig. S7 '"H NMR spectrum of SPA in DMSO-d.
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5. Synthesis of compound DTB
To a solution of mixture of trimesoyl chloride (0.025 g, 0.1 mmol) and triethylamine (1-2 d) was slowly
dropwise added into the solution of 4-aminopyridine (0.031 g, 0.33 mmol) in DMF (10 mL), the mixture
was stirred at room temperature for 20 h, appearing a pale solid DTB (0.038 g, 87%). The solid was
vacuumed suction filtration and washed with cold ethyl alcohol (10 mL), then drying product solid in a
vacuum oven at 40 °C for 24 h, m. p.: 167-169 °C. 'H NMR (Fig. S10) (400 MHz, DMSO-d) 6 (ppm):
11.08-11.03 (t, /= 18.0 Hz, 3 H, NH), 8.79 (s, 1 H, ArH), 8.72 (s, 1 H, ArH), 8.63 (s, 1 H, ArH), 8.54-
8.53 (d, 6 H, J= 6.0 Hz, ArH), 7.88-7.86 (m, 6 H, ArH). 13C NMR (Fig. S11) (151 MHz, DMSO-d;) 6
(ppm): 166.05, 146.13, 135.38, 132.15, 114.60, 109.24. ESI-MS m/z: [DTB] calcd for C,4H;sNO3,
439.1474, found 439.1512 (Fig. S12).
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Fig. S10 'H NMR spectrum of DTB in DMSO-dj.
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Table S1 The sources of various cations.

Cations Sources Names
Hg>* Hg(ClO4),3H,0 Mercury perchlorate trihydrate
Ca?* Ca(ClO4),'6H,0 Calcium perchlorate hexahydrate
Mg?* Mg(ClO4), 6H,0 Magnesium perchlorate hexahydrate
Ni2* Ni(ClOy),6H,0 Nickel perchlorate hexahydrate
Cu?* Cu(ClQOy),-6H,0 Copper perchlorate hexahydrate
Cr¥* Cr(ClOy);-6H,0 Chromium perchlorate hexahydrate
Cd** Cd(Cl10Oy),-6H,0 Cadmium perchlorate hexahydrate
Pb%* Pb(Cl04),-3H,0 Lead perchlorate trihydrate
Ag" AgClOy4 Silver perchlorate, anhydrous
Zn** Zn(Cl0Oy),6H,0 Zinc perchlorate hexahydrate
Fe* Fe(Cl0O4);-6H,0 Iron perchlorate hexahydrate
Ba?* Ba(ClOy), Barium perchlorate, anhydrous
Co?* Co(Cl0Oy),-6H,0 Cobalt perchlorate hexahydrate
La’* LaCl;-7H,0 Lanthanum chloride heptahydrate
Eu* EuCl;-6H,0 Europium chloride hexahydrate
Tb3* TbCl3-6H,0 Terbium chloride hexahydrate
Table S2 The sources of various anions.
Anions Sources Names
AcO- (C4Hy)4sN(AcO) Tetrabutylammonium acetate
HSO4 (C4Hg)4sN(HSO,) Tetrabutylammonium hydrogen sulfate
H,PO, (C4Ho)N (H,PO,) Tetrabutylarll)llrll(l)cs)glillzr:; dihydrogen
F- (C4Hg)4NF Tetrabutylammonium fluoride
Cl- (C4Hg)4NCl Tetrabutylammonium chloride
Br (C4Ho)4NBr Tetrabutylammonium bromide
I (C4Hog)4NI Tetrabutylammonium iodide
ClOy (C4Hy)4N(Cl1Oy) Tetrabutylammonium perchlorate
SCN- NaSCN Sodium sulfocyanate
CN- NaCN Sodium cyanide
S* Na,S:-9H,0 Sodium sulfide nonahydrate
N3~ NaNj; Sodium azide
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Fig. S13 Fluorescence spectra of the SPA (sol), DTB (gel), PDG (gel) and PDG (sol) in DMSO-H,0O
binary solution (A¢x = 300 nm).

Table S3 Gelation properties of supramolecular hydrogel PDG.

Entry Solvent State? CGCY(%)  Tet(C,Wt%)
1 water P \ \
2 acetone P \ \
3 methanol P \ \
4 ethanol P \ \
5 isopropanol P \ \
7 acetonitrile P \ \
8 THF P \ \
9 DMF S \ \
10 DMSO S \ \
11 DMSO-H,0 G 5 95(5)
11 CCly P \ \
12 n-hexane P \ \
13 ethanediol P \ \
14 tert-butylalcohol P \ \
15 CH,Cl, S \ \
16 CHCl, P \ \
17 CH,CICH,Cl P \ \
18 petroleum ether P \ \
19 ethyl acetate P \ \
20 n-propanol P \ \
21 n-butyl alcohol P \ \
22 cyclohexanol P \ \
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Fluorescence Intensity

23

n-hexanol

P

\

3G, P and S denote gelation, precipitation and solution, respectively;
bThe critical gelation concentration (wt%, 10 mg/mL = 1.0 %);

°The gelation temperature (C).

Table S4 Optimum water contents of gelation conditions.

Entry water solvent State® Tgel®(C)
1 0% S \
2 10% S \
3 15% S \
4 20% S \
5 25% S \
6 30% S \
7 35% S \
8 40% G 60
9 45% G 77
11 50% G 95
12 55% G 82
13 60% S \

3G, P and S denote gelation, precipitation and solution, respectively.

bThe gelation temperature (C).

(a) () o
350 Wogh o Weighing
a® -t 0.5+ mu;aéqua o ouer
300 e T = Adj RSquar 089216
. .K Value Standard E
250 i g 004 | Sope 2180 o0ren
. =
200 . = -0.5 1
n -E
150 2 T 1.0
i g
100 4 = S .sd
m®
04 u®
- -2.04
0 Ll T T T T 1 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 -28 -26 -24 22 20 18 -16
Equivalents Log [D]

Fig. S14 (a) A plot of emission of SPA at 460 nm versus number of equivalents of DTB; (b) The binding

constant and complex ratio of SPA and DTB with fluorescent titration.
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Fig. S15 The partial '"H NMR spectra of PDG in DMSO-dg with different concentrations: (a) 5 mg mL;
(b) 10 mg mL%; (¢) 15 mg mL-'; (d) 20 mg mL-'; (¢) 30 mg mL-!; (f) 50 mg mL".

120 11.5 11.0 9.0 85 80 75 7.0 6.550 45 4.0 35 3.0 25 2.0 15
f2 (ppm)

Fig. S16 2D NOESY NMR spectrum of PDG (70 mM) in DMSO-d; solution.
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Fig. S17 XRD patterns of SPA, DTB and xerogel PDG.
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Fig. S19 SEM images of (a) SPA; (b) DTB; (c) PDG; (d) PDG-Pb; (¢) PDG-Cr; (f) PDG-Cr + CN;
(g) PDG-Fe; (h) PDG-Fe + H,PO,.

1 PDG 1 PDG + Pb?* 1 PDG + Pb?* + other cations

700 -
600 -
500 -
400 -
300 -
200 -

100 A

PDG Pb2* Hg?* Ca?* Mg?* Ni2* Cu?* Cr3* Cd?* Fe¥* Ag* Zn2* Ba?* Co?* La’* Eu’®* Tb¥*

Fig. S20 Fluorescence responses of PDG to Pb?" in the presence of various cations aqueous solution

(Hg?*, Ca?*, Mg?*, Ni?*, Cu?', Cr’', Cd?*', Fe’*, Ag", Zn?>', Ba?", Co?", La’*, Eu?* and Tb*") at 300 nm.
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Fig. S21 Fluorescence responses of PDG to Cr3* in the presence of various cations aqueous solution

Hg2", Ca?t, MgZ', Ni?", Cu?', Fe3', Cd*', Pb%', Ag', Zn*', Ba2", Co?", La’*', Eu?" and Tb3") at 300 nm.
g g g

—1 PDG — PDG + Fe?* [ ] PDG + Fe®* + other cations

700 -

100 -

PDG Fe3* Hg?" Ca?* Mg2?* Ni2* Cu?* Cr3* Cd?* Pb?* Ag* Zn?* Ba?* Co?" La’" Eu’ Tb¥

Fig. S22 Fluorescence responses of PDG to Fe' in the presence of various cations aqueous solution

Hg?t, Ca2t, Mg2", Ni*, Cu?™, Cr3*, Cd?", Pb2", Ag*, Zn?", Ba?", Co?*, La**, Eu3* and Tb3") at 300 nm.
g g g
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Table S5 A part of the literatures about the LODs (mol/L) of ions (Cr3*, Pb?", Fe** and CN-) are provided

in the followed table, calculation formula and related date.

Journal

for Pb2*

for Cr3+ for Fe3*

For CN-

Chem. Res. Chinese
Univ., 2010, 26, 194-197.

J Hazard Mater, 2010, 177,

963-989.

Optik, 2018, 158, 813-825.

Cryst. Growth Des.,
2017, 17, 4326-4335.

Optik, 2018, 158, 813-825.

1.00x 107

1.00x 108

2.37x10%8

1.50x 10

1.12%10°

Inorg. Chem., 2016,
55, 12660-12668.

ACS Sens,, 2016, 1,
1265-1271.

Sens. Actuators B: Chem.,
2017, 253, 942-948.

- - 1.00x107 -

_ - - 557=107
497107

8.25x 109 386 10%

This wark 6.74>10° 718109

The result of the analysis as follows: For Cr3*
Linear Equation: Y =320.23 x X +252.95 R?=0.99136

S=4.59 x 108

Y (-7

N-1

&= =1.10 (N = 20) K=3

LOD=K x§/S=7.18 x 10° M
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Table S6 Comparison of the adsorption rates

Fe3*.

of the fluorescence sensing systems for Pb?*, Cr** and

Journal for Pb2+ for Cr3+ for Fe2*
Etc. Anal. Chem., 2013, 85, 7441-7446. - - 98.2%
Chemical Engineering Journal, 90%
2018, 343, Pages 492-499. h -
Ind. Eng. Chem. Res_ 2013, 52, 6502-6512. - 95 61% -
RSC Adv., 20186, 6, 19780-19791. 93.85% 68.52% -
Journal of Colloid and Interface Science, 70%
2015, 442 120-132. - h
ACS Appl. Mater. Interfaces, 2019, 35, 32186-32191. 90% - -
Journal of the Taiwan Institute of Chemical Engineers, 96.58%
2018, 93, 379-387. : ) h
Journal of Colloid and Interface Science, 93.4%
2015, 445, 294-302. : - -
This work 96.73% 98 .35% 98.95%

Calculation method of adsorption percentage:
CgX Vg
1= *100%

Adsorption percentage (%) = ( h

(state: Cy, is the residual concentration of Pb2*, Cr?*, and Fe?*, C, is the initial concentration of Pb2*, Cr3*, and Fe¥*, Vg =V))

Em PDG+Cr

PDG + Cr3*+ other antions

700 1

600
500 1
400 1
300 1
200 +
100

PDG + Cr** + CN-

PDG + Cré*+ other antions + CN-

0

PDG+Cr** cN- CI Br F

AcO- H,POs, I

S24

HSO4 CIO4
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SCN- 8% N3- OH-



Fig. S23 Fluorescence responses of PDG-Cr to CN- in the presence of various anions aqueous solution

(CN,, CI, Br, F-, AcO-, H,POy, I, HSOy, ClO,, SCN-, S%-, N3, and OH-) at 300 nm.

700 -
600
500 A
400 1
300 A
200 H1
100 A

mm PDG +Fe®

B PDG + Fe’+ other antions

EEE  PDG + Fe®* + H,PO,-

PDG + Fe®*+ other antions + H,PO,"

0

PDG+Fe* H,PO4

Cl- Br- AcO- I-

HSO4 ClOy cN- SCN- 52 N3~ OH-

Fig. S24 Fluorescence responses of PDG-Fe to H,PO,4 in the presence of various anions aqueous

solution (H,POy4, Cl-, Br, F-, AcO-, I, HSOy, ClO4, CN-, SCN-, S*, N5, and OH") at 300 nm.

(@) w0

400:
350
300
250
200
150

100 4

Fluorescence Intensity(a.u.)

50 -

1.8

equiv.

—
350

—
400

T ¥ T ¥ T ¥ T
450 500 550 600

Wavelength(nm)

(b)
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Weight No Weighting
Residual Sum  203.6385
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Value  Standard Er
Intercept 850131 5.5474
Slope 405.597 17.00058
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Fig. S25 (a) Fluorescent titration of PDG-Cr for CN- (A = 300 nm); (b) The photograph of the linear

range for CN~.
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Fig. S26 (a) Fluorescent titration of PDG-Fe for H,PO4 (Ax = 300 nm); (b) The photograph of the

linear range for HPOy,.
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Fig. S27 Fluorescent “on-off-on” cycles of PDG, controlled by the alternative addition of Cr3* and CN-
(Aex =300 nm).
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Fig. S28 FT-IR spectra of PDG, PDG-Cr and PDG-Cr + CN-.
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Fig. S29 XRD patterns of xerogel PDG-Cr and xerogel PDG-Cr + CN-.
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Fig. S30 A possible sensing mechanism of the PDG to Cr** and the PDG-Cr to CN-,
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Fig. S31 FT-IR spectra of PDG, PDG-Fe and PDG-Fe + H,PO,.
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Fig. S32 XRD patterns of xerogel PDG-Fe and xerogel PDG-Fe + H,PO4.
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Fig. S33 A possible sensing mechanism of the PDG to Fe** and the PDG-Fe to H,PO,".
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Fig. S34 Partial 'H NMR spectra of PDG in DMSO-ds with different equivalent Pb** : (a) Free PDG

(0.01 M) ; (b) 0.1 equiv.; (¢) 0.5 equiv.; (d) 1.0 equiv..
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Fig. S35 FT-IR spectra of PDG and PDG-Pb.
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Fig. S36 XRD patterns of xerogel PDG and xerogel PDG-Pb.
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Fig. S37 A possible sensing mechanism of the PDG to Pb?".
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