Electronic Supporting Information

One-Pot Three-Component Polymerization for In-Situ Generation of AIE-Active Poly(tetraarylethene)s Using Grignard Reagents As Building Block

Zijie Qiu,^{†,§,#} Qingqing Gao,^{†,§,#} Ting Han,[‡] Xiaolin Liu, ^{†,§,} Jacky W. Y Lam,^{†,§,*} and Ben Zhong Tang^{†,§,I,*}

[†] Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study and Department of Chemical and Biological Engineering;

§ HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China;

‡ Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;

I Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.

*Corresponding authors: Dr. J. W. Y. Lam and Prof. B. Z. Tang (E-mail: chjacky@ust.hk and tangbenz@ust.hk).

[#]Both authors contributed equally to this work.

Table of Content

Figure S1. IR spectra of (A) 1a, (B) 2, (C) 6 and (D) P1a/2/3a.

Figure S2. ¹³C NMR spectra of (A) 1a, (B) 2, (C) 6 and (D) P1a/2/3a in chloroform-d or dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S3. IR spectrum of (A) 1b, (B) 2, (C) 6, (D) P1b/2/3a.

Figure S4. ¹H NMR spectrum of (A) 1b and (B) 2 in chloroform-*d*, and (C) 6 and (D) P1b/2/3a in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S5. ¹³C NMR spectrum of (A) 1b and (B) 2 in chloroform-d, and (C) 6 and (D) P1b/2/3a in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S6. IR spectrum of (A) 1a, (B) 2, (C) 6, (D) P1a/2/3b.

Figure S7. IR spectrum of (A) 1a, (B) 2, (C) 6, (D) P1a/2/3c.

Figure S8. ¹H NMR spectrum of (A) 1a and (B) 2 in chloroform-*d*, and (C) 6 and (D) P1a/2/3c in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S9. ¹³C NMR spectrum of (A) 1a and (B) 2 in chloroform-*d*, and (C) 6 and (D) P1a/2/3c in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S10. Absorption spectra of P1a/2/3a and 6 in THF solution. Solution concentration: $10 \mu M$.

Figure S11. (A) Photographs of **6** in THF and THF/water mixtures with different water fractions (f_w) taken under 365 nm UV irradiation from a hand-held UV lamp. (B) Emission spectra of **6** in THF and THF/water mixtures with different water fractions. (Solution concentration: 10 μ M; excitation wavelength: 380 nm). (C) Plot of relative emission intensity (I/I_0) versus the water fraction of the THF/water mixtures of TPE-OBu. I_0 = intensity at $f_w = 0$.

Figure S12. (A) Emission spectra of P1b/2/3a in THF and THF/water mixtures with different water fractions. (Solution concentration: 10 μ M; excitation wavelength: 380 nm). (B) Plot of relative emission intensity (I/I_0) versus the water fraction of the THF/water mixtures of P1b/2/3a. I_0 = intensity at $f_w = 0$.

Figure S13. (A) Emission spectra of P1a/2/3b in THF and THF/water mixtures with different water fractions. (Solution concentration: 10 μ M; excitation wavelength: 380

nm). (B) Plot of relative emission intensity (I/I_0) versus the water fraction of the THF/water mixtures of P1a/2/3b. I_0 = intensity at $f_w = 0$.

Figure S14. Thermal gravimetric analysis thermograms of P1a/2/3a recorded under nitrogen at a heating rate of 10 °C/min.

Figure S15. Size distributions of the nanoparticles of the P1a/2/3a aggregates suspended in the THF-water mixtures with f_w of (A) 50 and (B) 90 vol%.

Figure S1. IR spectra of (A) 1a, (B) 2, (C) 6 and (D) P1a/2/3a.

Figure S2. ¹³C NMR spectra of (A) 1a, (B) 2, (C) 6 and (D) P1a/2/3a in chloroform-d or dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S3. IR spectrum of (A) 1b, (B) 2, (C) 6, (D) P1b/2/3a.

Figure S4. ¹H NMR spectrum of (A) 1b and (B) 2 in chloroform-d, and (C) 6 and (D) P1b/2/3a in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S5. ¹³C NMR spectrum of (A) **1b** and (B) **2** in chloroform-*d*, and (C) **6** and (D) P**1b/2/3a** in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S6. IR spectrum of (A) 1a, (B) 2, (C) 6, (D) P1a/2/3b.

Figure S7. IR spectrum of (A) 1a, (B) 2, (C) 6, (D) P1a/2/3c.

Figure S8. ¹H NMR spectrum of (A) 1a and (B) 2 in chloroform-*d*, and (C) 6 and (D) P1a/2/3c in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S9. ¹³C NMR spectrum of (A) **1a** and (B) **2** in chloroform-*d*, and (C) **6** and (D) P**1a**/**2**/**3c** in dichloromethane- d_2 . The solvent peaks were marked with asterisks.

Figure S10. Absorption spectra of P1a/2/3a and 6 in THF solution. Solution concentration: $10 \mu M$.

Figure S11. (A) Photographs of **6** in THF and THF/water mixtures with different water fractions (f_w) taken under 365 nm UV irradiation from a hand-held UV lamp. (B) Emission spectra of **6** in THF and THF/water mixtures with different water fractions. (Solution concentration: 10 μ M; excitation wavelength: 380 nm). (C) Plot of relative emission intensity (I/I_0) versus the water fraction of the THF/water mixtures of TPE-OBu. I_0 = intensity at $f_w = 0$.

Figure S12. (A) Emission spectra of P1b/2/3a in THF and THF/water mixtures with different water fractions. (Solution concentration: 10 μ M; excitation wavelength: 380 nm). (B) Plot of relative emission intensity (I/I_0) versus the water fraction of the THF/water mixtures of P1b/2/3a. I_0 = intensity at $f_w = 0$.

Figure S13. (A) Emission spectra of P1a/2/3b in THF and THF/water mixtures with different water fractions. (Solution concentration: 10 μ M; excitation wavelength: 380 nm). (B) Plot of relative emission intensity (I/I_0) versus the water fraction of the THF/water mixtures of P1a/2/3b. I_0 = intensity at $f_w = 0$.

Figure S14. Thermal gravimetric analysis thermograms of P1a/2/3a recorded under nitrogen at a heating rate of 10 °C/min.

Figure S15. Size distributions of the nanoparticles of the P1a/2/3a aggregates suspended in the THF-water mixtures with f_w of (A) 50 and (B) 90 vol%.