Supporting information for

Difluoromethylthio Moiety Lowers LCST of Oligo(ethylene glycol)-Based Homopolymers

Haoyu Liu, Aishun Ding, Chen Ma, Xiaoyu Huang,* Chun Feng,

Zhiqin Wang, Zhaolei Wang, Guolin Lu*

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.

* To whom correspondence should be addressed, E-mail: luguolin@mail.sioc.ac.cn (Tel: +86-21-54925546, Fax: +86-21-64166128), xyhuang@mail.sioc.ac.cn (Tel: +86-21-54925310, Fax: +86-21-64166128).

Experimental Section

Materials

N-(3-bromopropyl)phthalimide (Aladdin, >98%), tetrabutylammonium bromide (TBAB, Aladdin, >98%), sodium hydrosulfide (NaHS, Aladdin, >98%), boron tribromide (BBr₃, Adamas, 99.99%), (trifluoromethyl)trimethylsilane (TMSCF₃, Adamas, 98%), hydrazine hydrate (Aladdin, >98%), carbon disulfide (CS₂, J&K, >98%), acryloyl chloride (TCI, >98%), benzyl bromide (Aladdin, >98%), 3-mercaptopropionic acid (Adamas, 99.99%), potassium hydroxide (KOH, Adamas, 99.99%), 2-methoxyethanol (TCI, >98%), triethylene glycol monomethyl ether (TCI, >98%), methyl tetraglycol (Adamas, 99.99%) and pentaethylene glycol monomethyl ether (TCI, >98%) were used as received. 2,2'-Azobis(isobutyronitrile) (AIBN, Aldrich, 98%) was recrystallized from ethanol twice prior use. Dichloromethane (DCM, Aldrich, 99%) and N_r -dimethylformamide (DMF, Alfar Aesar, 99%) were dried over CaH₂ and distilled over CaH₂ prior to use. 3-(Benzylthiocarbonothioylthio)propanoic acid was synthesized according to a previous literature.¹

Characterization

FT-IR spectra are recorded on a Nicolet AVATAR-360 FT-IR spectrophotometer with a 4 cm⁻¹ resolution. All ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a JEOL resonance ECZ 400S spectrometer (400 MHz) in CDCl₃. Tetramethylsilane (TMS) and CDCl₃ were used as internal standards for ¹H and ¹³C NMR, respectively; CF₃CO₂H was used as an external standard for ¹⁹F NMR. Electrospray ionization mass spectrometry (ESI-MS) was measured by an Agilent FTMS-7.0 Fourier transformation mass spectrometer. Relative molar mass and dispersity were measured by a conventional gel permeation chromatography (GPC) system equipped with a Waters 515 Isocratic HPLC pump, a Waters 2414 refractive index detector, and a set of Waters Styragel columns (HR3, HR4 and HR5, 7.8×300 mm, particle size: 5 μ m). GPC measurements were carried out at 35°C using THF as eluent with a flow rate of 1.0 mL/min. The system was calibrated with linear poly(methyl methacrylate) standards. The phase transition temperature of homopolymer was measured by UV/vis using a Hitachi U-2910 spectrophotometer over a temperature range between 0°C and 70°C, the temperature was controlled and measured by using a DC-1006 variable temperature cryostat with an ascending rate of 1°C/min. The data were obtained after the sample was equilibrated at each temperature for 15 min.

Synthesis of 3-difluoromethylthio-1-propylamine

The key intermediate, 3-difluoromethylthio-1-propylamine, was prepared from *N*-(3-bromopropyl)phthalimide via three steps (Scheme 1) as below.

N-(3-bromopropyl)phthalimide (100.0 g, 373.1 mmol), NaHS (41.8 g, 74.6 mmol) and TBAB (62.7 g, 298.6 mmol) were stirred in 500 mL of DMF at room temperature for 12 h followed by adding water (150 mL) to quench the reaction. The mixture was extracted with DCM (100 mL×3), and the organic phase was then collected and washed with water (200 mL×3). After rotary evaporation, the crude product was

purified by flash column chromatography on silica gel (eluent: EtOA/*n*-hexane, v:v = 1:5), affording 45.6 g (55.1%) of *N*-(3-mercaptopropyl)phthalimide **1** as a white crystal. ¹H NMR (CDCl₃): δ (ppm): 7.84, 7.71 (4H, phenyl), 3.80 (2H, NCH₂CH₂CH₂SH), 2.53 (2H, NCH₂CH₂CH₂SH), 1.98 (2H, NCH₂CH₂CH₂SH), 1.58 (1H, NCH₂CH₂CH₂SH). ¹³C NMR (CDCl₃): δ (ppm): 168.3, 133.9, 132.0, 123.2, 36.3, 32.6, 21.8. FT-IR: ν (cm⁻¹): 3451, 2940, 2554, 2081, 1761, 1693, 1467, 1435. ESI-MS *m/z*: 222.06 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₁H₁₂O₂NS⁺¹ 222.0583, Found 222.0582.

N-(3-Mercaptopropyl)phthalimide **1** (16.0 g, 72.1 mmol) and KOH (24.2 g, 96.9 mL, 20% aq) were first added to 200 mL of DCM and the solution was cooled to 0°C. TMSCF₂Br (22.4 mL, 144.2 mmol) in 50 mL of DCM was then added dropwise within 30 min under stirring. The reaction lasted 1 h and was quenched by water. The organic phase was collected and washed with water (200 mL×3). After rotary evaporation, the crude product was purified by column chromatography on silica gel (eluent: *n*-hexane), affording 10.2 g (54.3%) of *N*-(3-difluoromethylthiopropyl)-phthalimide **2** as a white solid. ¹H NMR (CDCl₃): δ (ppm): 7.84, 7.72 (4H, phenyl), 6.80 (1H, NCH₂CH₂CH₂SCF₂H), 3.80 (2H, NCH₂CH₂CH₂SCF₂H), 2.82 (2H, NCH₂CH₂CH₂SCF₂H), 2.06 (2H, NCH₂CH₂CH₂SCF₂H). ¹³C NMR (CDCl₃): δ (ppm): 168.2, 134.1, 131.9, 123.3, 120.5 (SCF₂H), 36.6, 29.3, 24.5. ¹⁹F NMR (CDCl₃): δ (ppm): -92.74 (2F, SCF₂H). FT-IR: ν (cm⁻¹): 3459, 2942, 1769, 1701, 1612, 1464, 1437. ESI-MS *m/z*: 294.04 [M+Na]⁺¹. HR-MS (ESI) *m/z*: [M+Na]⁺¹, calcd for C₁₂H₁₁O₂NF₂NaS⁺¹ 294.0371, Found 294.0372.

N-(3-difluoromethylthiopropyl)phthalimide 2 (8.60 g, 31.7 mmol) and hydrazine hydrate (50 mL, 20 eq) were refluxed in DCM (100 mL) at 75°C for 8 h. The mixture was washed by dichloromethane. The solution was cooled to room temperature and filtered. The obtained white solid was washed with DCM (50 mL×3) followed by drying over anhydrous Na₂SO₄. After rotary evaporation, the residue was distilled at 50°C under reduced pressure to give 3.00 g (67.1%) of 3-difluoromethylthio-1propylamine **3** as a colorless liquid. ¹H NMR (CD₃OD): δ (ppm): 7.01 (1H, NH₂CH₂CH₂CH₂SCF₂H), 2.83 (2H, NH₂CH₂CH₂CH₂SCF₂H), 2.70 (2H, NH₂CH₂CH₂CH₂SCF₂H), 1.79 (2H, NH₂CH₂CH₂CH₂SCF₂H). ¹³C NMR (CD₃OD): δ (ppm): 120.7 (SCF₂H), 40.6, 33.4, 24.5. ¹⁹F NMR (CD₃OD): δ (ppm): -94.44 (2F, SCF₂H). FT-IR: v (cm⁻¹): 2936, 2863, 1653, 1591, 1442, 1325. ESI-MS m/z: 142.05 $[M+H]^{+1}$. HR-MS (ESI) m/z: $[M+H]^{+1}$, calcd for C₄H₁₀O₂NF₂S⁺¹ 142.0497, Found 142.0496.

Synthesis of MEO_nA ($n = 2 \sim 5$)

The with different number of ethylene glycol unit, MEO_nA (n = 2~5), were prepared via esterification reaction between acryloyl chloride and the corresponding oligo(ethylene glycol) methyl ether. Taking MEO_2A as an example, the procedure is as below.

Diethylene glycol monomethyl ether (25.0 g, 208 mmol) and Et₃N (26.0 mL, 188 mmol) were dissolved in 150 mL of anhydrous dichloromethane. The solution was cooled to 0°C followed by adding acryloyl chloride (20.4 mL, 250 mmol) dropwise

within 10 min. The mixture was slowly warmed up to room temperature and stirred at room temperature for 12 h. The precipitated salt was removed by filtration and the filtrate was washed with brine three times. The organic layer was evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (eluent: EtOAc/*n*-hexane, v:v = 1:3), affording 29.5 g (81.5 %) of MEO₂A as a light yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.43, 6.13, 5.80 (3H, CH=CH₂), 4.31 (2H, CO₂CH₂CH₂), 3.73 (2H, CO₂CH₂CH₂), 3.63 (2H, OCH₂CH₂OCH₃), 3.53 (2H, OCH₂CH₂OCH₃), 3.36 (3H, OCH₃).

MEO₃**A:** 75.5% yield as a colorless oil. ¹H NMR (CDCl₃): δ (ppm): 6.36, 6.09, 5.77 (3H, CH=CH₂), 4.25 (2H, CO₂CH₂CH₂), 3.68 (2H, CO₂CH₂CH₂), 3.60 (6H, OCH₂CH₂OCH₂CH₂OCH₃), 3.49 (2H, OCH₂CH₂OCH₂CH₂OCH₃), 3.32 (3H, OCH₃). **MEO**₄**A:** 68.0% yield as a colorless oil. ¹H NMR (CDCl₃): δ (ppm): 6.37, 6.09, 5.77 (3H, CH=CH₂), 4.25 (2H, CO₂CH₂CH₂), 3.43-3.74 (14H, CO₂CH₂CH₂(OCH₂CH₂)₃OCH₃), 3.31 (3H, OCH₃). ¹³C NMR (CDCl₃): δ (ppm): 166.2, 130.8, 128.2, 71.9, 70.6, 70.4, 69.1, 63.6, 59.0. FT-IR: ν (cm⁻¹): 2872, 1722, 1635, 1453, 1407,1352, 1295. ESI-MS *m/z*: 263.15 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₂H₂₃O₆⁺¹ 263.1489, Found 263.1489.

MEO₅A: 52.4% yield as a colorless oil. ¹H NMR (CDCl₃): δ (ppm): 6.41, 6.13, 5.81 (3H, CH=CH₂), 4.27 (2H, CO₂CH₂CH₂), 3.49-3.67 (18H, CO₂CH₂CH₂(OCH₂CH₂)₄OCH₃), 3.40 (s, OCH₃). FT-IR: ν (cm⁻¹): 2878, 2822, 1722, 1636, 1453, 1407, 1355, 1271. ESI-MS *m/z*: 307.18 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₄H₂₇O₇⁺¹ 307.1751, Found 307.1751.

Synthesis of DFTP-MEO_n-AM ($n = 2 \sim 5$)

The acrylamide monomers with difluoromethylthio moiety and different number of ethylene glycol unit, DFTP-MEO_n-AM (n = 2~5), were prepared through aza-Michael addition reaction between 3-difluoromethylthio-1-propylamine and the corresponding MEO_nA (n = 2~5), followed by amidation reaction with acryloyl chloride (Scheme 1). Taking DFTP-MEO₂-AM as an example, the procedure is as below.

3-Difluoromethylthio-1-propylamine 3 (3.50 g, 24.8 mmol) and MEO₂A (4.23 g, 24.3 mmol) were added to a 25 mL flask at ambient temperature. The mixture was stirred at room temperature for 12 h, then the residue (7.50 g) and Et₃N (5.0 mL, 36.1 mmol) were dissolved in DCM (30 mL). The solution was cooled to 0°C followed by adding acryloyl chloride (2.5 mL, 30.9 mmol) dropwise within 10 min. The mixture was slowly warmed up to room temperature and stirred at room temperature for 12 h. The precipitated salt was removed by filtration and the filtrate was washed with brine three times. After rotary evaporation, the residue was purified by flash column chromatography on silica gel (eluent: EtOAc/*n*-hexane, v:v = 1:2), affording 3.62 g (39.5 %) of DFTP-MEO₂-AM **5a** as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.79 (1H, CH₂CH₂NCH₂CH₂CH₂CH₂SCF₂H), 6.54 (1H, CH₂=CH), 6.34, 5.69 (2H, CH₂=CH), 4.23 (2H, CO₂CH₂CH₂), 3.64, 3.51 (6H, CO₂CH₂CH₂OCH₂CH₂OCH₃; 4H, $CH_2CH_2NCH_2CH_2CH_2SCF_2H),$ 3.36 (3H, $OCH_3),$ 2.79 (2H, CH₂CH₂NCH₂CH₂CH₂SCF₂H), 2.63 (2H, CH₂CH₂NCH₂CH₂SCF₂H), 1.86 (2H, CH₂CH₂NCH₂CH₂CH₂SCF₂H). ¹³C NMR (CDCl₃): δ (ppm): 172.1, 166.3, 128.6, 127.1, 121.7 (SCF₂H), 71.8, 70.4, 68.9, 63.7, 59.0, 47.4, 43.7, 34.2, 29.9, 24.7. ¹⁹F NMR (CDCl₃): δ (ppm): -92.6 (2F, SCF₂H). FT-IR: ν (cm⁻¹): 3475, 2929, 2883, 1730, 1645, 1609, 1450, 1430, 1378, 1313. ESI-MS *m*/*z*: 370.15 [M+H]⁺¹. HR-MS (ESI) *m*/*z*: [M+H]⁺¹, calcd for C₁₅H₂₆O₅NF₂S⁺¹ 370.1494, Found 370.1494.

DFTP-MEO₃-AM 5b: 41.0% yield as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.79 (1H, CH₂CH₂NCH₂CH₂CH₂SCF₂*H*), 6.40 (1H, CH₂=C*H*), 6.15, 5.82 (2H, C*H*₂=CH), 4.29 (2H, CO₂C*H*₂CH₂), 3.68, 3.53, 3.43 (10H, CO₂CH₂C*H*₂(OC*H*₂C*H*₂)₂OCH₃; 4H, CH₂C*H*₂NC*H*₂CH₂CH₂SCF₂H), 3.35 (3H, OC*H*₃), 2.83 (2H, CH₂C*H*₂NCH₂CH₂CH₂SCF₂H), 2.61 (2H, C*H*₂CH₂NCH₂CH₂CH₂SCF₂H), 1.91 (2H, CH₂CH₂NCH₂C*H*₂CH₂SCF₂H). ¹³C NMR (CDCl₃): δ (ppm): 172.0, 166.3, 128.8, 127.2, 120.3 (SCF₂H), 71.9, 70.6, 68.9, 64.0, 63.8, 59.0, 47.4, 43.7, 34.2, 29.8, 24.7. ¹⁹F NMR (CDCl₃): δ (ppm): -92.6 (SC*F*₂H). FT-IR: ν (cm⁻¹): 3503, 2877, 1729, 1646, 1610, 1451, 1378, 1253. ESI-MS *m/z*: 414.18 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₇H₃₀O₆NF₂S⁺¹ 414.1756, Found 414.1756.

DFTP-MEO₄**-AM 5c:** 47.5% yield as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.80 (1H, CH₂CH₂NCH₂CH₂CH₂CH₂SCF₂*H*), 6.56 (1H, CH₂=C*H*), 6.34, 5.70 (2H, C*H*₂=CH), 4.22 (2H, CO₂C*H*₂CH₂), 3.70-3.44 (14H, CO₂CH₂C*H*₂(OC*H*₂C*H*₂)₃OCH₃; 4H, CH₂C*H*₂NC*H*₂CH₂CH₂SCF₂H), 3.35 (3H, OC*H*₃), 2.79 (2H, CH₂CH₂NCH₂CH₂CH₂SCF₂H), 2.68 (2H, C*H*₂CH₂NCH₂CH₂SCF₂H), 1.93 (2H, CH₂CH₂NCH₂C*H*₂CH₂CH₂SCF₂H). ¹³C NMR (CDCl₃): δ (ppm): 172.1, 166.4, 128.6, 127.3, 120.5 (SCF₂H), 71.9, 70.6, 68.9, 64.1, 63.9, 59.0, 47.5, 43.7, 34.3, 30.0, 24.8. ¹⁹F NMR (CDCl₃): δ (ppm): -92.6 (2F, C*F*₂H). FT-IR: ν (cm⁻¹): 3482, 2876, 1730, 1644, 1608, 1451, 1377, 1351, 1308. ESI-MS *m/z*: 458.20 [M+H]⁺¹. HR-MS (ESI)

S-8

m/z: [M+H]⁺¹, calcd for C₁₉H₃₄O₆NF₂S⁺¹ 458.2019, Found 458.2018.

DFTP-MEO₅-AM 5d: 40.6% yield as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.80 (1H, CH₂CH₂NCH₂CH₂CH₂CH₂SCF₂H), 6.56 (1H, CH₂=CH), 6.35, 5.70 (CH₂=CH), 4.22 (2H, $CO_2CH_2CH_2),$ 3.72-3.44 (18H, $CO_2CH_2CH_2(OCH_2CH_2)_4OCH_3;$ 4H. $CH_2CH_2NCH_2CH_2CH_2SCF_2H),$ 3.35 (3H, $OCH_3),$ 2.80 (2H, CH₂CH₂NCH₂CH₂CH₂SCF₂H), 2.65 (2H, CH₂CH₂NCH₂CH₂SCF₂H), 1.94 (2H, CH₂CH₂NCH₂CH₂CH₂SCF₂H). ¹³C NMR (CDCl₃): δ (ppm): 172.1, 166.4, 128.8, 127.3, 120.4 (SCF₂H), 71.9, 70.6, 69.0, 64.1, 63.8, 59.0, 47.4, 43.7, 34.3, 29.8, 24.7. ¹⁹F NMR (CDCl₃): δ (ppm): -92.6 (2F, SCF₂H). FT-IR: ν (cm⁻¹): 2923, 2853, 1716, 1663, 1462, 1375, 1242, 1169. ESI-MS *m/z*: 502.23 [M+H]⁺¹. HR-MS (ESI) *m/z*: $[M+H]^{+1}$, calcd for C₂₁H₃₈O₈NF₂S⁺¹ 502.2281, Found 502.2281.

Synthesis of Bu-MEO_n-AM ($n = 2 \sim 5$)

The acrylamide monomers with different number of ethylene glycol unit, Bu-MEO_n-AM (n = $2\sim5$), were prepared through similar steps as DFTP-MEO_n-AM, starting from *n*-butylamine (Scheme S1). Taking Bu-MEO₂-AM as an example, the procedure is as below.

n-Butylamine (2.75 g, 37.6 mmol) and MEO₂A (3.98 g, 22.9 mmol) were added to a 25 mL flask at ambient temperature. The mixture was stirred at room temperature for 12 h, then the residue (6.31 g) and Et₃N (5.3 mL, 38.3 mmol) were dissolved in DCM (30 mL). The solution was cooled to 0°C followed by adding acryloyl chloride (2.7 mL, 33.1 mmol) dropwise within 10 min. The mixture was slowly warmed up to room temperature and stirred at room temperature for 12 h. The precipitated salt was removed by filtration and the filtrate was washed with brine three times. After rotary evaporation, the residue was purified by flash column chromatography on silica gel (eluent: EtOAc/n-hexane, v:v = 1:2), affording 3.75 g (49.3%) of Bu-MEO₂-AM 7a as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.51 (1H, CH₂=CH), 6.32, 5.65 (2H, CH₂=CH), 4.22 (2H, CO₂CH₂CH₂), 3.67 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃), 3.62 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃), 3.52 (6H, CO₂CH₂CH₂OCH₂CH₂OCH₃), 3.35 (3H, CH₂CH₂NCH₂CH₂CH₂CH₂), $OCH_3),$ 2.64 (2H, 1.52 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃), 1.28 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃), 0.90 (3H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃): δ (ppm): 172.1, 166.3, 127.9, 127.6, 71.9, 70.6, 69.0, 63.7, 59.1, 48.8, 43.1, 32.8, 31.8, 19.9, 13.8. FT-IR: v (cm⁻¹): 3471, 2930, 2873, 1731, 1645, 1608, 1400, 1377, 1281, 1252. ESI-MS *m/z*: 302.20 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₅H₂₈O₅N⁺¹ 302.1962, Found 302.1962.

Scheme S1. Synthesis and RAFT homopolymerization of Bu-MEO_n-AM monomers

$$(n = 2 \sim 5).$$

Bu-MEO₃-AM 7b: 38.7% yield as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.51 (1H, CH₂=CH), 6.30, 5.66 (2H, CH₂=CH), 4.20 (2H, CO₂CH₂CH₂), 3.64, 3.52 (4H, CH₂CH₂NCH₂CH₂CH₂CH₃; 10H, CO₂CH₂CH₂(OCH₂CH₂)₂OCH₃), 3.35 (3H, OCH₃), 2.65 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂), 1.51 (2H, CH₂CH₂NCH₂CH₂CH₂CH₃), 1.27 (2H, CH₂CH₂NCH₂CH₂CH₂CH₃), 0.90 (3H, CH₂CH₂NCH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃): δ (ppm): 172.1, 166.3, 127.9, 127.6, 71.9, 70.6, 69.0, 63.7, 59.1, 48.8, 43.1, 32.8, 31.8, 19.9, 13.8. FT-IR: ν (cm⁻¹): 3500, 3315, 2930, 2871, 1732, 1645, 1608, 1450, 1375, 1251. ESI-MS *m/z*: 346.22 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₇H₃₂O₆N⁺¹ 346.2224, Found 346.2224.

Bu-MEO₄-AM 7c: 52.5% yield as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.50 (1H, CH₂=CH), 6.32, 5.66 (2H, CH₂=CH), 4.21 (2H, CO₂CH₂CH₂), 3.65, 3.53 (4H, CH₂CH₂NCH₂CH₂CH₂CH₃; 14H, CO₂CH₂CH₂(OCH₂CH₂)₃OCH₃), 3.35 (3H, OCH₃), 2.65 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂), 1.53 (2H, CH₂CH₂NCH₂CH₂CH₂CH₃), 1.30 (2H, CH₂CH₂NCH₂CH₂CH₂CH₃), 0.92 (3H, CH₂CH₂NCH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃): δ (ppm): 172.1, 166.3, 128.0, 127.6, 71.9, 70.6, 69.0, 63.8, 59.0, 48.8, 43.1, 32.8, 31.8, 20.0, 13.8. FT-IR: ν (cm⁻¹): 2928, 2870, 1732, 1646, 1611, 1450, 1376, 1250, 1189. ESI-MS *m/z*: 390.25 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₁₉H₃₆O₇N⁺¹ 390.2486, Found 390.2486.

Bu-MEO₅-AM 7d: 45.0% yield as a yellow oil. ¹H NMR (CDCl₃): δ (ppm): 6.50 (1H, CH₂=CH), 6.32, 5.65 (2H, CH₂=CH), 4.21 (2H, CO₂CH₂CH₂), 3.66, 3.52 (4H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃; 18H, CO₂CH₂CH₂(OCH₂CH₂)₄OCH₃), 3.35 (3H, OCH₃), 2.65 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₂CH₂), 1.53 (2H, CH₂CH₂NCH₂CH₂CH₂CH₃), 1.30 (2H, CH₂CH₂NCH₂CH₂CH₂CH₃), 0.90 (3H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃): δ (ppm): 172.0, 166.2, 128.0, 127.5, 71.9, 70.5, 69.0, 63.8, 59.0, 48.8, 43.1, 32.7 31.8, 19.9, 13.7. FT-IR: ν (cm⁻¹): 3523, 2870, 1731, 1645, 1609, 1451, 1376, 1283, 1251, 1100. ESI-MS *m/z*: 434.27 [M+H]⁺¹. HR-MS (ESI) *m/z*: [M+H]⁺¹, calcd for C₂₁H₄₀O₈N⁺¹ 434.2748, Found 434.2749.

RAFT homopolymerization of DFTP-MEO_n-AM ($n = 2 \sim 5$)

In a typical procedure ([monomer]:[CTA]:[AIBN] = 100:2:1), AIBN (3.4 mg, 0.021 mmol), 3-(benzylthiocarbonothioylthio)propanoic acid (11.2 mg, 0.041 mmol) and DFTP-MEO₂-AM 5a (761.0 mg, 2.06 mmol) were first added to a 25 mL Schlenk flask (flame-dried under vacuum prior to use) sealed with a rubber septum for degassing and kept under N₂. Next, dry DMF (0.6 mL) was charged via a gastight syringe. The flask was degassed by three cycles of freezing-pumping-thawing followed by immersing the flask into an oil bath set at 80°C. The polymerization lasted 24 h and was terminated by putting the flask into liquid N₂. The reaction mixture was precipitated into *n*-hexane/Et₂O (v:v = 1:1). The crude product was purified by repeated dissolution in DCM and precipitation in *n*-hexane/Et₂O (v:v = 1:1) followed by drying in vacuo overnight to give 290.4 mg of poly(DFTP-MEO₂-AM) 6a as a yellow oil. GPC: $M_n = 8,000$ g/mol, $M_w/M_n = 1.27$. ¹H NMR (CDCl₃): δ (ppm): 6.90 (1H, CH₂CH₂NCH₂CH₂CH₂SCF₂H), 4.19 (2H, CO₂CH₂CH₂), 3.63, 3.53 (6H, CO₂CH₂CH₂OCH₂CH₂OCH₃; 4H, CH₂CH₂NCH₂CH₂SCF₂H), 3.34 (1H, OCH₃), 2.75, 2.55 (4H, CH₂CH₂NCH₂CH₂CH₂SCF₂H; 1H, CH₂CH), 1.85 (2H, CH₂CH₂NCH₂CH₂CH₂SCF₂H; 2H, CH₂CH). ¹⁹F NMR (CDCl₃): δ (ppm): -92.5 (2F, SCF₂H). FT-IR: ν (cm⁻¹): 3293, 3080, 2933, 1641, 1531, 1440.

RAFT Homopolymerization of Bu-MEO_n-AM ($n = 2 \sim 5$)

In a typical procedure ([monomer]:[CTA]:[AIBN] = 100:2:1), AIBN (4.4 mg, 0.027 mmol), 3-(benzylthiocarbonothioylthio)propanoic acid (14.5 mg, 0.054 mmol), and Bu-MEO₂-AM 7a (798.5 mg, 2.66 mmol) were first added to a 25 mL Schlenk flask (flame-dried under vacuum prior to use) sealed with a rubber septum for degassing and kept under N₂. Next, dry DMF (0.6 mL) was charged via a gastight syringe. The flask was degassed by three cycles of freezing-pumping-thawing followed by immersing the flask into an oil bath set at 80°C. The polymerization lasted 24 h and was terminated by putting the flask into liquid N2. The reaction mixture was precipitated into *n*-hexane/Et₂O (v:v = 1:1). The crude product was purified by repeated dissolution in DCM and precipitation in *n*-hexane/Et₂O (v:v = 1:1) followed by drying *in vacuo* overnight to give 361.4 mg of poly(Bu-MEO_n-AM) **8a** as a yellow oil of. GPC: $M_n = 6,000$ g/mol, $M_w/M_n = 1.04$. ¹H NMR (CDCl₃): δ (ppm): 4.20 (2H, CO₂CH₂CH₂), 3.64, 3.53 (4H, CH₂CH₂NCH₂CH₂CH₂CH₂CH₃; 6H, $CO_2CH_2CH_2OCH_2CH_2OCH_3),$ (3H, OCH_3), 2.67 3.36 (2H, CH₂CH₂NCH₂CH₂CH₂CH₂), 2.17 (2H, CH₂CH), 1.39 (2H, CH₂CH; 4H, $CH_2CH_2NCH_2CH_2CH_2CH_3$), 0.92 (3H, $CH_2CH_2NCH_2CH_2CH_2CH_3$). FT-IR: ν (cm⁻¹): 2929, 2872, 1730, 1634, 1450, 1379, 1307.

Figure S1. ¹H (A), ¹³C (B), and ¹⁹F (C) NMR spectra of *N*-(3-difluorothiomethyl)phthalimide **2** in CDCl₃.

Figure S2. ¹H (A), (B) ¹³C and (C) ¹⁹F NMR spectra of DFTP-MEO₃-AM 5b in CDCl₃.

Figure S3. ¹H (A), ¹³C (B) and (C) ¹⁹F NMR spectra of DFTP-MEO₄-AM 5c in $CDCl_3$.

Figure S4. ¹H (A), ¹³C (B) and ¹⁹F(C) NMR spectra of DFTP-MEO₅-AM 5d in $CDCl_3$.

Figure S5. ¹H (A) and ¹³C (B) NMR spectra of Bu-MEO₂-AM 7a in CDCl₃.

Figure S6. 1 H (A) and 13 C (B) NMR spectra of Bu-MEO₃-AM 7b in CDCl₃.

Figure S7. 1 H (A) and 13 C (B) NMR spectra of Bu-MEO₄-AM 7c in CDCl₃.

Figure S8. 1 H (A) and 13 C (B) NMR spectra of Bu-MEO₅-AM 7d in CDCl₃.

Figure S9. ¹H (A) and ¹⁹F (B) NMR spectra of poly(DFTP-MEO₃-AM) 6b in CDCl₃.

Figure S10. ¹H (A) and ¹⁹F (B) NMR spectra of poly(DFTP-MEO₅-AM) 6d in CDCl₃.

Figure S11. ¹H NMR spectrum of poly(Bu-MEO₂-AM) 8a in CDCl₃.

Figure S12. ¹H NMR spectrum of poly(Bu-MEO₃-AM) 8b in CDCl₃.

Figure S13. ¹H NMR spectrum of poly(Bu-MEO₄-AM) 8c in CDCl₃.

Figure S14. ¹H NMR spectrum of poly(Bu-MEO₂-AM) 8d in CDCl₃.

References

 Benaglia, M.; Alberti, A.; Spisni, E.; Papi, A.; Treossia, E.; Palermo, V. Polymeric Micelles Using Pseudo-amphiphilic Block Copolymers and Their Cellular Uptake. *J. Mater. Chem.* 2011, *21*, 2555-2562.