Electronic Supplementary Information

for

SSynthesis of Cyclic Olefin Copolymers (COCs) by Ethylene Copolymerisations with

Cyclooctene, Cycloheptene, and with Tricyclo[6.2.1.0(2,7)]undeca-4-ene: Effect of Cyclic

Monomer Structures on Thermal Properties

Hitoshi Harakawa, Masaki Okabe, and Kotohiro Nomura*

Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan.

Contents

1. Additional results for ethylene copolymerisation with cyclooctene, cycloheptene, and with tricyclo[6.2.1.0(2,7)]undeca-4-ene.

2. Selected NMR spectra in the copolymers including assignment of resonances and estimation of comonomer contents

3. DSC thermograms in the copolymers.

4. Plots of glass transition temperature (T_g) vs comonomer content (mol%) in ethylene copolymers with norbornene (NBE), tetracyclododecene (TCD), and with tricyclo[6.2.1.0(2,7)]undeca-4-ene (TCUE).

1. Additional results for ethylene copolymerisation with cyclooctene, cycloheptene, and with tricyclo[6.2.1.0(2,7)]undeca-4-ene.

Table S1. Copolymerization of ethylene (E) with cyclooctene (COE) by **1-9** - MAO catalysts.^{*a*} Additional results (1).

run	cat.	COE	Е	temp.	yield	activity ^c	$M_{ m n}{}^d$	$M_{ m w}/$	cont. ^e	$T_{\rm g} \left(T_{\rm m}\right)^f$
	(µmol)	conc. ^b / M	/ atm	/ °C	/ mg			$M_{\mathrm{n}}{}^{d}$	/ mol%	/ °C
1	1 (1.5)	2.5	2	25	78	312	59000	1.35	-	38 (129)
2	1 (1.0)	5.0	2	25	42.5	255	35200	1.40	-	38 (127)
S 1	1 (1.0)	5.0	2	25	48.4	251	37100	1.53		28 (126)
3	2 (1.5)	2.5	2	25	74.4	298	32600	1.36	-	40^{i}
4	2 (1.0)	2.5	4	25	124	742	48300	1.29	-	32^{j}
S 2	2 (1.0)	2.5	4	25	123	736	52500	1.35	-	31 ^{<i>j</i>}
5	2 (1.5)	5.0	2	25	57.7	231	20700	1.62	43.7^{h}	44^{j}
6 ^{<i>g</i>}	2 (1.5)	5.0	2	25	81.5	326	10000	1.77	-	46 (115)
$S3^{g}$	2 (1.5)	5.0	2	25	82.0	328	9830	2.03		42 (115)
7	3 (0.2)	5.0	4	25	146	4380	318000	1.47	22.5	6
26	3 (0.05)	1.0	4	25	89.2	10700	1260000	2.05	7.0	(70)
27	3 (0.2)	2.5	4	25	228	6850	863000	1.89	16.1	-15 (32)
S 4	3 (0.2)	2.5	4	25	245	7360	759000	1.37	16.7^{i}	-17 (32)
28	3 (0.2)	2.5	4	50	122	3660	423000	1.49	17.4^{i}	-14 (32)
8	3 (0.5)	5.0	2	25	138	1660	239000	1.57	28.0	32
9 ^g	3 (0.5)	5.0	2	25	202	2420	218000	2.21	-	13 ^j
S 5	3 (0.5)	5.0	2	25	241	2890	374000	1.50	-	12^{j}
10	3 (0.5)	7.5	2	25	114	1360	141000	1.57	28.1	36
S 6	3 (0.5)	7.5	2	25	112	1340	131000	1.34	29.3 ^{<i>i</i>}	38
11	4 (1.0)	2.5	2	25	83.5	501	5600	1.24	-	14^{j}
S 7	4 (1.0)	2.5	2	25	72.0	432	6310	1.30		17^{j}
12	4 (1.0)	5.0	2	25	100	602	5700	1.21	-	18^{j}
S 8	4 (1.0)	5.0	2	25	90.3	542	4240	1.19		20 ^{<i>i</i>}
13	5 (0.01)	5.0	4	25	250	150000	1670000	1.72	-	(69)
S 9	5 (0.01)	5.0	4	25	215	129000	1360000	1.78		(70)
14	5 (0.01)	5.0	2	25	127	76400	1650000	2.52	16.0^{i}	-20 (48)
S10	5 (0.01)	5.0	2	25	103	61900	2430000	2.40	16.0^{i}	-20 (46)
15	5 (0.03)	7.5	2	25	148	29700	1210000	2.30	20.2	-5
S 11	5 (0.03)	7.5	2	25	142	28400	1330000	2.22	20.2	-5.2
16	6 (0.01)	5.0	4	25	290	174000	1470000	1.48	-	(71)
S12	6 (0.01)	5.0	4	25	290	174000	1130000	2.06		(71)
17	6 (0.01)	5.0	2	25	201	121000	3050000	2.15	16.3 ^{<i>i</i>}	-19 (56)
18	6 (0.02)	7.5	2	25	119	35800	2540000	2.15	20.4	-5.5
S13	6 (0.02)	7.5	2	25	109	32600	1570000	2.08	20.4	-2.9

Table S1. Con	tinued.
---------------	---------

19 7 (0.01)	5.0	4	25	139	83100	2270000	2.56	2.6	(105)
S14 7 (0.01)	5.0	4	25	125	75200	2660000	2.48	2.6	(106)
20 7 (0.01)	5.0	2	25	110	66100	1700000	3.09	-	(92)
S15 7 (0.01)	5.0	2	25	124	74300	2010000	2.51		(92)
21 7 (0.01)	7.5	2	25	98.9	59300	1050000	2.30	7.2	-17 (76)
22 8 (1.0)	5.0	4	25	121	726	143000	1.73		(66)
S16 8 (1.0)	5.0	4	25	135	810	148000	1.82		(67)
23 8 (1.0)	2.5	2	25	94.4	566	161000	1.54		(77) ^j
24 8 (1.0)	5.0	2	25	55.1	331	155000	1.36	9.9	(59) ^{<i>j</i>}
S17 8 (1.0)	2.5	2	25	74.7	448	150000	1.56		(76)
25 9 (0.5)	2.5	2	25	52.1	625	372000	1.24	-	(41) ^{<i>j</i>}
S18 9 (0.5)	2.5	2	25	39.3	472	443000	1.25		44^j
26 9 (0.5)	5.0	2	25	133	1590	314000	1.39	-	(55) ^{<i>j</i>}
S19 9 (0.5)	5.0	2	25	111	1340	371000	1.67		46 ^{<i>j</i>}
27 10 (0.05)	5.0	2	25	137	16500	290000	2.18	-	(133)
28 11 (0.01)	2.5	2	25	105	63000	2500	4.12		(103,124)
29 11 (0.02)	5.0	2	25	122	36600	1700	3.95		(108)
S20 11 (0.02)	5.0	2	25	119	35700	1600	4.39		(110)
30 11 (0.05)	7.5	2	25	96.2	11500	820	5.18		(98)
S21 11 (0.05)	7.5	2	25	115	13800	1100	4.08		(99)

^aConditions: toluene + COE total 10 mL, d-MAO (prepared by removing toluene and AlMe₃ from the commercially available TMAO-S) 3.0 mmol. ^b Initial COE concentration (mol/L). ^cActivity = kg-polymer/mol-M·h (M = Ti or Zr). ^dGPC data in *o*-dichlorobenzene vs polystyrene standards. ^eCOE content (mol%) estimated by ¹³C NMR spectra. ^fBy DSC thermograms. ^gAlⁱBu₃ (500 equiv) and [Ph₃C][B(C₆F₅)₄] (1.5 equiv) were used instead of d-MAO. ^hCOE content in the whole polymer estimated by the ¹³C NMR spectrum. ⁱEstimated on the basis of the plots of T_g and COE content. ^jSmall T_m shoulder at ca.120 °C was also observed on the DSC thermogram.

run	3	MAO	time	yield	activity ^b	$M_{\rm n}{}^c$	$M_{ m w}/$	cont. ^d	$T_{\rm g} \left(T_{\rm m}\right)^e$
	/ µmol	/ mmol	/ min	/ mg		×10 ⁻⁴	M_n^c	/ mol%	/ °C
35	0.5	1.0	10	87.4	1050	23.4	1.31	28.9 ^f	36
S22	0.5	1.0	10	84.8	1020	22.5	1.32	28.7 ^f	35
8	0.5	3.0	10	138	1660	23.9	1.57	28.0	32
36	0.5	5.0	10	171	2050	37.9	1.53	27.5 ^f	30
S23	0.5	5.0	10	195	2340	19.9	1.63	24.5 ^f	17
36	0.5	3.0	5	111	2670	31.9	1.34	27.7 ^f	31
S24	0.5	3.0	5	114	2730	30.5	1.38	28.7 ^f	35
8	0.5	3.0	10	138	1660	23.9	1.57	28.0	32
38	0.5	3.0	15	193	1550	31.9	1.41	27.5^{f}	30
S25	0.5	3.0	15	222	1770	26.1	1.55	27.5 ^f	30

Table S2. Copolymerization of ethylene (E) with cyclooctene (COE) by $Cp*TiCl_2(O-2,6-^iPr_2C_6H_3)$ (3) - MAO catalyst (ethylene 4 atm, COE 5.0 M, 25 °C).^{*a*} Additional results (2).

^{*a*}Conditions: toluene + COE total 10 mL, COE 5.0 M, d-MAO (prepared by removing toluene and AlMe₃ from the commercially available TMAO-S). ^{*b*}Activity = kg-polymer/mol-Ti·h. ^{*c*}GPC data in *o*-dichlorobenzene vs polystyrene standards. ^{*e*}COE content (mol%) estimated by ¹³C NMR spectra. ^{*e*}By DSC thermograms. ^{*f*}Estimated on the basis of the plots of T_g and COE content.

Table S3. Copolymerization of ethylene (E) with cycloheptene (CHP) by $Cp*TiCl_2(O-2,6-^{i}Pr_2C_6H_3)$ (3)–d-MAO catalyst.^{*a*} Additional results.

run	cat. 3	CHP	Е	temp	yield	activity ^c	$M_{\rm n}{}^d$	$M_{ m w}/$	cont. ^e	$T_{\rm g} (T_{\rm m})^f$
	/ µmol	conc. ^b / M	/ atm	/ °C	/ mg		×10 ⁻⁴	$M_{\rm n}{}^d$	/ mol%	/ °C
43	0.001	1.0	4	25	77.7	466000	244	1.36	10.3	-67
44	0.01	2.5	2	25	69.6	41800	132	1.77	32.3	-5
S26	0.01	2.5	2	25	68.4	41000	164	1.58	31.7 ^g	-10
45	0.01	5.0	2	25	63.3	38000	174	1.54	35.7	9
S27	0.01	5.0	2	25	62.4	37400	201	1.58	35.2 ^g	9
46	0.01	5.0	4	50	161	96500	308	1.34	32.8 ^g	-4
47	0.02	7.5	2	25	92.6	27800	178	1.54	37.1	17

^aConditions: toluene + CHP total 10 mL, d-MAO 3.0 mmol, 10 min. ^b Initial CHP concentration (mol/L). ^cActivity= kg-polymer/mol-Ti·h. ^dGPC data in *o*-dichlorobenzene vs polystyrene standards. ^eCHP content (mol%) estimated by ¹³C NMR spectra. ^fBy DSC thermograms. ^gEstimated on the basis of the plots of T_g and CHP content.

run	cat. 1	TCUE	Е	yield	activity ^c	${M_{ m n}}^d$	$M_{ m w}/$	cont. ^e	$T_{\rm g}(T_{\rm m})^f$
	/ µmol	conc. ^b / M	/ atm	/ mg		×10 ⁻⁴	$M_{\rm n}{}^d$	/ mol %	/ °C
48	0.02	1.0	4	74.8	22400	20.4	1.53	19.5	43
49	0.1	1.0	2	98.7	5920	6.16	1.52	26.5	64
50	0.5	2.5	2	155	1860	2.34	1.68	35.1	116
S28	0.5	2.5	2	140	1670	2.08	2.04	34.6 ^g	111
51	0.8	5.0	2	204	1530	1.38	2.10	38.8	130
S29	0.8	5.0	2	231	1730	1.65	1.81	39.4 ^g	134
52	0.5	5.0	2	222	1640	1.59	2.02	40.0 ^g	137

Table S4. Copolymerization of ethylene (E) and tricyclo[6.2.1.0(2,7)]undeca-4-ene (TCUE) by $(1,2,4-Me_3C_5H_2)$ TiCl₂(O-2, 6^{-i} Pr₂C₆H₃) (1)–d-MAO catalyst.^{*a*} Additional results.

^{*a*}Conditions: toluene + TCUE total 10 mL, 25 °C, 10 min, d-MAO (prepared by removing toluene and AlMe₃ from the commercially available TMAO-212) 3.0 mmol. ^{*b*}Initial TCUE concentration (mol/L). ^{*c*}Activity= kg-polymer/mol-Ti·h. ^{*d*}GPC data in *o*-dichlorobenzene vs polystyrene standards. ^{*e*}TCUE content (mol%) estimated by ¹³C NMR spectra. ^{*f*}By DSC thermograms. ^{*g*}Estimated on the basis of the plots of T_g and TCUE content. ^{*h*}d-MAO 2.0 mmol. ^{*i*}d-MAO 1.0 mmol.

2. Selected ¹³C NMR spectra for resultant copolymers including assignment of resonances and estimation of comonomer contents.

Figure S1. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-COE) prepared by ('BuC₅H₄)TiCl₂(O-2,6-Cl₂C₆H₃) (**2**) - MAO catalyst [run 5, Table 1, COE 43.7 mol% (COE content in the whole polymer)].

Figure S2. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-COE) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 7, Table 1, COE 22.5 mol%).

Figure S3. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-COE) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 8, Table 1, COE 28.0 mol%).

Figure S4. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-COE) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 10, Table 1, COE 28.1 mol%).

Figure S5. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 /bromobenzene- d_5 at 150 °C) for poly(ethylene*co*-COE) prepared by CpTiCl₂(N=C'Bu₂) (**5**) - MAO catalyst (run 15, Table 1, COE 20.2 mol%).

Figure S6. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 /bromobenzene- d_5 at 150 °C) for poly(ethylene*co*-COE) prepared by ('BuC₅H₄)TiCl₂(N=C'Bu₂) (**6**) - MAO catalyst (run 18, Table 1, COE 20.4 mol%).

Figure S7. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 /bromobenzene- d_5 at 150 °C) for poly(ethylene*co*-COE) prepared by (indenyl)TiCl₂(N=C'Bu₂) (7) - MAO catalyst (run 19, Table 1, COE 2.6 mol%).

Figure S8. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 /bromobenzene- d_5 at 150 °C) for poly(ethylene*co*-COE) prepared by (indenyl)TiCl₂(N=C^tBu₂) (7) - MAO catalyst (run 21, Table 1, COE 7.2 mol%).

Figure S9. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-COE) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 31, Table 2, COE 7.0 mol%).

Figure S10. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-COE) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 32, Table 2, COE 16.1 mol%).

Figure S11. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-COE) prepared by [Me₂Si(C₅Me₄)(N'Bu)]TiCl₂ (**8**) - MAO catalyst (run 24, Table 1, COE 9.9 mol%).

Figure S12. ¹³C NMR and the dept spectrum (in *o*-dichlorobenzene- d_4 /bromobenzene- d_5 at 150 °C) for poly(ethylene-*co*-COE) prepared by CpTiCl₂(N=C'Bu₂) (**5**) - MAO catalyst (run 15, Table 1, COE 20.2 mol%).

(spectrum, run 19, Table 1)

COE (mol%) =
$$\frac{(C_{1,2} + C_{3,8} + C_{4,7} + C_{5,6})/8}{(C_{1,2} + C_{3,8} + C_{4,7} + C_{5,6})/8 + (C_{\alpha} + C_{\beta} + C_{\gamma} + C_{PE})/2} \times 100$$

Figure S13. ¹³C NMR and the dept spectrum (in *o*-dichlorobenzene- d_4 at 110 °C) for poly(ethylene-*co*-COE) prepared by [Me₂Si(Ind)₂]ZrCl₂ (**11**) - MAO catalyst (run 28, Table 1).

Figure S14. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 110 °C) for poly(ethylene-*co*-COE) prepared by [Me₂Si(Ind)₂]ZrCl₂ (**11**) - MAO catalyst (run 29, Table 1).

Figure S15. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 110 °C) for poly(ethylene-*co*-COE) prepared by [Me₂Si(Ind)₂]ZrCl₂ (11) - MAO catalyst (run S21).

Figure S16. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-CHP) prepared by (${}^{t}BuC_{5}H_{4}$)TiCl₂(O-2,6-Cl₂C₆H₃) (**2**) - MAO catalyst (run 40, Table 3, CHP 38.6 mol%).

Figure S17. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-CHP) prepared by ($^{t}BuC_{5}H_{4}$)TiCl₂(O-2,6-Cl₂C₆H₃) (**2**) - MAO catalyst (run 42, Table 3, CHP 40.8 mol%).

Figure S18. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-CHP) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 43, Table 3, CHP 10.3 mol%).

Figure S19. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-CHP) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 44, Table 3, CHP 32.3 mol%).

Figure S20. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-CHP) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 45, Table 3, CHP 35.7 mol%).

Figure S21. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-CHP) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 47, Table 3, CHP 37.1 mol%).

Figure S22. ¹³C NMR and the dept spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene*co*-CHP) prepared by Cp*TiCl₂(O-2,6-Cl₂C₆H₃) (**3**) - MAO catalyst (run 45, Table 3, CHP 35.7 mol%).

CHP (mol%) =
$$\frac{(C_{1,2} + C_{7,3} + C_{4,6} + C_5)/7}{(C_{1,2} + C_{7,3} + C_{4,6} + C_5)/7 + (C_{\alpha,\beta} + C_{\gamma} + C_{PE})/2} \times 100$$

Figure S23. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) and the dept spectrum for poly(ethylene-*co*-CHP) prepared by ('BuC₅H₄)TiCl₂(O-2,6-Cl₂C₆H₃) (**2**) - MAO catalyst (run 42, Table 3, CHP 40.8 mol%).

Figure S24. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-TCUE) prepared by (1,2,4-Me₃C₅H₂)TiCl₂(O-2,6-Cl₂C₆H₃) (1) - MAO catalyst (run 48, Table 4, TCUE 19.5 mol%).

Figure S25. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-TCUE) prepared by (1,2,4-Me₃C₅H₂)TiCl₂(O-2,6-Cl₂C₆H₃) (1) - MAO catalyst (run 49, Table 4, TCUE 26.5 mol%).

Figure S26. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-TCUE) prepared by (1,2,4-Me₃C₅H₂)TiCl₂(O-2,6-Cl₂C₆H₃) (1) - MAO catalyst (run 50, Table 4, TCUE 35.1 mol%).

Figure S27. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-TCUE) prepared by (1,2,4-Me₃C₅H₂)TiCl₂(O-2,6-Cl₂C₆H₃) (1) - MAO catalyst (run 51, Table 4, TCUE 38.8 mol%).

Figure S28. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-TCUE) prepared by CpTiCl₂(N=C'Bu₂) (**5**) - MAO catalyst (run 56, Table 4, TCUE 9.4 mol%).

Figure S29. ¹³C NMR spectrum (in *o*-dichlorobenzene- d_4 at 130 °C) for poly(ethylene-*co*-TCUE) prepared by CpTiCl₂(N=C'Bu₂) (**5**) - MAO catalyst (run 57, Table 4, TCUE 20.7 mol%).

Figure S30. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-*co*-TCUE) prepared by CpTiCl₂(N=C'Bu₂) (**5**) - MAO catalyst (run 58, Table 4, TCUE 31.7 mol%).

Figure S31. ¹³C NMR spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene-co-TCUE) prepared by CpTiCl₂(N=C^tBu₂) (5) - MAO catalyst (run 62, Table 4, TCUE 40.7 mol%).

Figure S32. ¹³C NMR and the dept spectrum (in 1,1,2,2-tetrachloroethane- d_2 at 110 °C) for poly(ethylene*co*-TCUE) prepared by (1,2,4-Me₃C₅H₂)TiCl₂(O-2,6-Cl₂C₆H₃) (1) - MAO catalyst (run 48, Table 4, TCUE 19.5 mol%).

3. DSC thermograms in the copolymers.

Figure S33. DSC thermograms of polymers prepared by 1, 2, 4 - MAO catalysts in ethylene polymerization in the presence of COE. Detailed results are shown in Table 1 (runs 2, 5, 12).

Figure S34. DSC thermograms of poly(ethylene-*co*-COE)s prepared by $Cp*TiCl_2(O-2,6-Cl_2C_6H_3)$ (3) - MAO or borate catalysts. Detailed results are shown in Table 1 (runs 8, 9).

Figure S35. Detailed results are shown in Table 1 (runs 13-21).

Figure S36. DSC thermograms of polymers prepared by **8** - MAO catalysts in ethylene polymerization in the presence of COE. Detailed results are shown in Table 1 (runs 22-24).

Figure S37. DSC thermograms of polymers prepared by **9** - MAO catalysts in ethylene polymerization in the presence of COE. Detailed results are shown in Table 1 (run 26).

Figure S38. DSC thermograms of polymers prepared by **10** - MAO catalyst in ethylene polymerization in the presence of COE. Detailed results are shown in Table 1 (run 27).

Figure S39. DSC thermograms of polymers prepared by **11** - MAO catalyst in ethylene polymerization in the presence of COE. Detailed results are shown in Table 1 (runs 28-30).

Figure S40. DSC thermograms for poly(ethylene-*co*-CHP)s prepared by Cp'TiCl₂(O-2,6-^{*i*}Pr₂C₆H₃) [Cp' = t BuC₅H₄ (**2**), Cp* (**3**)] – d-MAO catalysts. CHP content: 10.3 mol% (run 43, Table 3), 32.3 mol% (run 44), 35.7 mol% (run 45), 37.1 mol% (run 47), 38.6 mol% (run 40), and 40.8 mol% (run 42).

Figure S41. DSC thermograms of polymers prepared by **1-4** - MAO catalysts in ethylene polymerization in the presence of TCUE. Detailed results are shown in Table 4 (runs S28,53-55).

Figure S42. DSC thermograms of polymers prepared by **5-7** - MAO catalysts in ethylene polymerization in the presence of TCUE. Detailed results are shown in Table 4 (runs 62-64).

Figure S43. DSC thermograms of polymers prepared by **8** - MAO catalysts in ethylene polymerization in the presence of TCUE. Detailed results are shown in Table 4 (runs 65).

4. Plots of glass transition temperature (T_g) vs comonomer content (mol%) in ethylene copolymers with norbornene (NBE), tetracyclododecene (TCD), and with tricyclo[6.2.1.0(2,7)]undeca-4-ene (TCUE).

Figure S44. Plots of glass transition temperature (T_g) vs comonomer content (mol%) in ethylene copolymers with norbornene (NBE, cited from: K. Nomura, *Chin. J. Polym. Sci.*, 2008, **26**, 513-523.), tetracyclododecene (TCD, cited from: W. Apisuk, H. Ito, and K. Nomura, *J. Polym. Sci. Part A: Polym. Chem.*, 2016, **54**, 2662-2667.), and with tricyclo[6.2.1.0(2,7)]-undeca-4-ene (TCUE).