Supporting Information

Visible light mediated BODIPY/Azo/Cyclodextrin based supramolecular polymer assemblies in different water content solution

Hang Li^{\dagger} , Liang-Liang Zhou^{\dagger}, Jia-Yi Chen^{\dagger}, Xing-Yu Li^{\dagger} , and Gui-Chao Kuang^{$\dagger, \ddagger *$}

[†]State Key Laboratory of Power Metallurgy, Department of Polymer Materials and

Engineering, Central South University, Changsha, Hunan 410083, P. R. China

[‡]State Key Laboratory of Molecular Engineering of Polymers, Fudan University,

Shanghai 200438, P. R. China

E-mail: gckuang@csu.edu.cn

Table of Content

1. Synthesis of Azo1
2. Reference
3. ¹ H NMR titration data of BDP/Azo
4. Nuclear Overhauser effect spectroscopy (NOESY) experiments of BDP/Azo complex
5. UV-vis and fluorescence spectra of BDP with different ratio of Azo in water4
6. DLS result of BDP/Azo at different water contents
7. Host-guest interaction between β -CD-C and Azo
8. ¹ H NMR spectra of supramolecular complexes
9. DLS result for different supramolecular complexes

10. UV-vis and fluorescence emission spectra of BDP/Azo with different ratio of	f β-
CD-C in water	7
11 JUNDAD	7
11. 'H NMR spectra after irradiation with different visible light	/
12. NMR spectra of BDP/ γ -CD	8
13. NMR and Mass spectra	9

1. Synthesis of Azo

BDP and β -CD-C were synthesized according to our previous work^{s1, s2}. Azo was prepared by two steps and afforded the yield about 12%. The molecular structures are confirmed by NMR and mass spectra, which are shown in Supporting Information (Figure S13-S16).

Scheme S1. Synthetic routes of tetramethoxy azoaniline monomer and Azo.

Synthesis of Tetramethoxyazobenzene^{s3}: 2,6-Dimethoxy-aniline (0.46 g, 3.00 mmol) was dissolved in a mixture of H₂O (0.56 mL) and HCl (0.73 mL, 37 wt.%). The mixture was cooled to 0-5 °C and an aqueous solution (2 mL) of NaNO₂ (0.21 g, 3.00 mmol) was slowly added. The solution was stirred for another 20 min at 0-5 °C. Then, diazonium salt was then slowly introduced to a suspension of 3,5-dimethoxy-aniline (0.46 g, 3.00 mmol) in H₂O (20 mL) at 0-5 °C. Saturated NaHCO₃ solution was added to adjust the pH value to ~ 8-9. After stirring overnight, the red precipitate was filtered and purified by chromatography using 1/1 methanol/ethyl acetate as eluent to give the product as a red solid (598 mg, yield: 31%).¹H NMR (400 MHz, DMSO-*d*₆): δ =3.66 (d, *J* = 2.4 Hz 12H, CH₃), 5.93 (s, 2H, CH), 5.96 (s, 2H, CH),

6.71 (d, *J* = 3.4 Hz 2H, NH₂), 7.13 (t, *J* = 8.3 Hz, 1H, CH).

Synthesis of Azo: Weigh tetramethoxyazobenzene (0.10 g, 3.15 mmol) and succinic anhydride (0.05 g, 4.73 mmol) were dissolved in toluene solvent, heated to reflux for 24 h. The solvent was evaporated under reduced pressure to afford the crude product. The crude product was purified with a silica gel column to obtain brick red viscous Azo (52 mg, yield: 39%). ¹H NMR (400 MHz, CD₃CN): δ = 2.62 (s, 4H, CH₂), 3.75 (d, *J* = 3.6 Hz 12H, CH₃), 6.75 (d, *J* = 8.4 Hz, 2H, CH), 7.09 (s, 2H, CH), 7.26 (t, *J* = 8.4 Hz, 1H, CH), 8.62 (s, 1H, COOH). ¹³C NMR (100 MHz, D₂O): δ = 29.4, 49.0, 56.3, 96.7, 105.6, 119.1, 152.3, 177.1. ESI-MS: Calculated for C₂₀H₂₃N₃O₇ [M+H]⁺: 418.1609, Found: 418.1693.

2. Reference

- (s1) J.-F. Yin, Y. Hu, D. G. Wang, Z. Jin, Y. Zhang, G.-C. Kuang, ACS Macro Letters 2017, 6, 139-143.
- (s2) L.-L. Zhou, J.-Y. Chen, X.-Y. Li, H. Li, H. Wang, D.-G. Wang, G.-C. Kuang, Macromol. Rapid. Comm. 2019, 40, 1900182.
- (s3) D. Wang, M. Wagner, H.-J. Butt, S. Wu, Soft Matter, 2015, 11, 7656-7662.

3. ¹H NMR titration data of BDP/Azo

Figure S1. ¹H NMR spectra of BDP (4 mM) with different ratios of Azo in D₂O/CD₃CN (1:2, v/v).

4. Nuclear Overhauser effect spectroscopy (NOESY) experiments of BDP/Azo complex

Figure S2. 2D ¹H NMR NOESY spectrum of a mixture of BDP/Azo (molecular ratio 1:2, $C_{BDP} = 4 \text{ mM}$) in D₂O/CD₃CN (1:2, v/v).

5. UV-vis and fluorescence spectra of BDP with different ratio of Azo in water

Figure S3. (a, c) UV-vis and (b, d) fluorescent emission spectra of BDP/Azo ($C_{BDP} = 10 \ \mu M$) complex with increasing molar ratio of Azo at (a, b) $f_w = 80\%$; (c, d) $f_w = 95\%$ in the H₂O/ACN. $\lambda_{ex} = 518$ nm.

6. DLS result of BDP/Azo at different water contents

Figure S4. DLS diagrams of BDP/Azo (molecular ratio 1:2, $C_{BDP} = 10 \ \mu M$) in a mixed solvent of water and acetonitrile ($f_w = 80\%$ and 97%).

7. Host-guest interaction between β -CD-C and Azo

Figure S5. ¹H NMR spectra of Azo, β -CD-C and Azo/ β -CD-C (molecular ratio 2:1, $C_{Azo} = 4$ mM) mixture in D₂O/CD₃CN (1:2, v/v).

8. ¹H NMR spectra of supramolecular complexes

Figure S6. ¹H NMR spectra of BDP/Azo (molecular ratio 1:2, $C_{BDP} = 4$ mM) with different molar ratio of β -CD-C in D₂O/CD₃CN (1:2, v/v).

9. DLS result for different supramolecular complexes

Figure S7. DLS diagram of BDP/Azo (1:2, $C_{BDP} = 10 \ \mu$ M) and BDP/Azo/ β -CD-C (molecular ratio 1:2:1) in H₂O/ACN with $f_w = 80\%$.

10. UV-vis and fluorescence emission spectra of BDP/Azo with different ratio of β -CD-C in water

Figure S8. (a, c) UV-vis and (b, d) fluorescent emission spectra of BDP/Azo complex (molecular ratio 1:2, $C_{BDP} = 10 \ \mu$ M) with increasing molar ratio of β -CD-C in the H₂O/ACN at (a, b) $f_w = 80\%$; (c, d) $f_w = 95\%$. $\lambda_{ex} = 518$ nm.

11. ¹H NMR spectra after irradiation with different visible light

Figure S9. ¹H NMR spectra of (a) BDP/Azo/ β -CD-C (molecular ratio 1:2:1, $C_{BDP} = 4$ mM), (b) under 530 nm irradiation for 2 h, and (c) further 450 nm irradiation for 2 h in D₂O/CD₃CN (1:2, v/v).

Figure S10. Partial enlargement ¹H NMR spectra of (a) BDP monomer ($C_{BDP} = 4 \text{ mM}$), (b) BDP/Azo complex (molecular ratio 1:2, $C_{BDP} = 4 \text{ mM}$); (c) under 530 nm irradiation for 2 h, and (d) further 450 nm irradiation for 2 h in D₂O/CD₃CN (1:2, v/v).

12. NMR spectra of BDP/*γ*-CD.

Figure S11. ¹H NMR spectra of BDP (red) and mixture of BDP and γ -CD (1:1, blue) in D₂O

Figure S12. The NOESY spectrum (500 MHz) of BDP/ γ -CD in D₂O.

13. NMR and Mass spectra

Figure S13. ¹H NMR spectrum of tetramethoxy azoaniline in DMSO-*d*₆

Figure S15. ¹³C NMR spectrum of Azo in D₂O

Figure S16. HR ESI-MS spectrum of Azo