Understanding Structure-property relationships of main chain cyclopropanes in linear polyesters

Connor J. Stubbs[§], Andrew P. Dove^{§*}

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Contents of PDF

Synthetic scheme for cyclopropane diacrylate preparation	2
NMR Spectra of monomers and precursors	3-7
NMR Spectra of Homopolymers	8-12
NMR Spectra of Copolymers	13-15
SEC Chromatograms of Homopolymers	
SEC Chromatograms of Copolymer	17
DSC Thermograms of Homopolymers	
DSC Thermograms of Copolymers	19
Stress vs Strain Tensile Curves	
Thermogravimetric analysis	
Summary of Data Table	

Synthetic scheme for cyclopropane diacrylate preparation

Figure S1 Synthetic scheme for the preparation of cyclopropane diacrylate monomers

NMR spectra of monomers and precursors

Figure S2 ¹H NMR spectrum of racemic diethyl-1,2-cyclopropane dicarboxylate in CDCl₃ (400 MHz, 298 K) (1)

Figure S3 ¹H NMR spectrum of *cis*-1,2-cyclopropanedimethanol **(2)** in DMSO-d6 (400 MHz, 298 K)

Figure S4 ¹³C NMR spectrum of *cis*-1,2-cyclopropanedimethanol **(2)** in DMSO-d6 (400 MHz, 298 K)

Figure S5 ¹H NMR spectrum of *trans*-1,2-cyclopropanedimethanol **(3)** in DMSO-d6 (400 MHz, 298 K)

Figure S6 ¹³C NMR spectrum of *trans*-1,2-cyclopropanedimethanol **(3)** in DMSO-d6 (400 MHz, 298 K)

Figure S7 ¹H NMR spectrum of *cis* Cy-diacrylate monomer (4) in CDCl₃ (400 MHz, 298 K)

Figure S8 ¹³C NMR spectrum of *cis* Cy-diacrylate monomer (4) in CDCl₃ (400 MHz, 298 K)

Figure S9 ¹H NMR spectrum of *trans* Cy-diacrylate monomer (5) in CDCl₃ (400 MHz, 298 K)

Figure S10¹³C NMR spectrum of *trans* Cy-diacrylate monomer (5) in CDCl₃ (400 MHz, 298 K)

NMR spectra of Homopolymers

Figure S11 ¹H NMR spectrum of BD-co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S12 ¹³C NMR spectrum of BD-co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S13 ¹H NMR spectrum of Cy(*cis*)-*co*-HDT in CDCl₃ (400 MHz, 298 K)

Figure S14 ¹³C NMR spectrum of Cy(*cis*)-*co*-HDT in CDCl₃ (400 MHz, 298 K)

Figure S15 ¹H NMR spectrum of Cy(*trans*)-*co*-HDT in CDCl₃ (400 MHz, 298 K)

Figure S16 ¹³C NMR spectrum of Cy(trans)-co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S17 ¹H NMR spectrum of Cy(*trans*)-*co*-BDT in CDCl₃ (400 MHz, 298 K)

Figure S18 ¹³C NMR spectrum of Cy(*trans*)-co-BDT in CDCl₃ (400 MHz, 298 K)

Figure S19 ¹H NMR spectrum of BD-co-BDT in CDCl₃ (400 MHz, 298 K)

Figure S20 ¹³C NMR spectrum of BD-co-BDT in CDCl₃ (400 MHz, 298 K)

NMR spectra of copolymers

Figure S22 ¹³C NMR spectrum of $BD_{90}Cy(trans)_{10}$ -co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S23 ¹H NMR spectrum of $BD_{90}Cy(cis)_{10}$ -co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S24 ¹³C NMR spectrum of $BD_{90}Cy(cis)_{10}$ -co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S25 ¹H NMR spectrum of BD₇₅Cy(*trans*)₂₅-co-HDT in CDCl₃ (400 MHz, 298 K)

Figure S26 ¹³C NMR spectrum of BD₇₅Cy(*trans*)₂₅-co-HDT in CDCl₃ (400 MHz, 298 K)

SEC chromatograms of Homopolymers

Figure S27 SEC chromatograms of homopolymers calculated against polystyrene standards in THF + $2\% v/v NEt_3$.

SEC chromatograms of Copolymers

Figure S28 SEC chromatograms of Copolymers calculated against polystyrene standards in THF $+ 2\% v/v \text{ NEt}_3$.

DSC thermograms of Homopolymers

Figure S29 DSC thermograms of Homopolymers 10 K·min⁻¹ heating and cooling rate.

DSC thermograms of Copolymers

Figure S30 DSC thermograms of Copolymers 10 K·min⁻¹ heating and cooling rate

Tensile stress vs strain Curves

Figure S31 Stress vs strain tensile curves of 2 day annealed polyester films

Thermogravimetric analysis (TGA)

Figure S32 Thermogravimetric analysis of polymers at a 10 K·min⁻¹

Sample	M _w (kDa)	Ð	<i>T</i> _g (°C)	<i>T</i> _m (°C)	<i>T</i> _c (°C)	$\Delta H_{\rm m}$ (J g ⁻¹)	E (MPa)‡	UTS (MPa)ŧ	ε _b (%)‡	U _T (MJm ⁻³)‡
BD-co-HDT	52.7	3.13	-66	52	17	-64.0	105±13	30±2	952±72	180±20
Cy(cis)-co-HDT	37.4	4.08	-47	-	-	-	-	-	-	-
Cy(trans)-co-HDT	38.0	4.30	-52	-	-	-	-	-	-	-
BD-co-BDT	22.0	7.78	-27	80	-	-58.7	-	-	-	-
Cy(trans)-co-BDT	23.5	6.58	-17	-	-	-	-	-	-	-
Cy(cis) ₁₀ BD ₉₀ -co-HDT	76.9	4.62	-63	50	9	-53.3	87±2	25±1	1028±31	167±1
Cy(trans) ₁₀ BD ₉₀ -co-HDT	63.5	4.28	-64	51	10	-55.0	81±4	26±2	890±84	147±22
Cy(trans)25BD75-co-HDT	91.8	4.54	-62	44	-2	-50.0	60±10	19±1	920±26	117±4

 Table S1 Summary of the reported thermomechanical properties for all polyesters. # Uncertainty taken as standard deviation (n=3).