Photo-cleavable perfluoroalkylated copolymers for tailoring the quantum dot thin films

Jongchan Son,^{a†} Heebum Roh,^{b†}, Han Young Shin,^c Keun-Woo Park,^a Chunhee Park,^a Hanbit Park,^a Changhee Lee,^b Jeonghun Kwak,^b Byung Jun Jung,^{*c} Jin-Kyun Lee^{*a}

^a Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea

^b Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

^c Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea

[†] Both authors contributed equally to this manuscript

* jungbj@uos.ac.kr and jkl36@inha.ac.kr

1. Materials

Benzil 1 (99.0%) was purchased from TCI. Hydroxylamine hydrochloride 2 (99%), isobornyl methacrylate (IBMA, technical grade), dichloromethane (anhydrous, 99.8%), tetrahydrofuran (THF, anhydrous, 99.9%), benzotrifluoride (BTF, anhydrous, 99%), butylated hydroxytoluene (BHT, 99%) were obtained from SigmaAldrich. 2,2-Azobisisobutyronitrile (AIBN) was purchased from Junsei Chemical and used after recrystallization from a mixture of MeOH and CHCl₃. Sodium acetate trihydrate (Duksan, 98.5%), EtOH (Daejung, 99.9%), triethylamine (Acros organic, 99%), methacryloyl chloride (Angene International Limited, 95%) were used as received. 1H,1H,2H,2H-perfluorooctyl methacrylate (FOMA, 99%) were procured from Shanghai Heat-biochem Co., China. FOMA and IBMA were used after passing through a short column packed with Al₂O₃. Cyano-2- propyldodecyl trithiocarbonate (CPDTC) was synthesized using a reported procedure.¹ Fluorous solvents, HFE-7200 (a mixture of ethyl nonafluoroisobutyl ether and ethyl nonafluorobutyl ether), HFE-7300 [1,1,1,2,3,4,5,6,6,6-decafluoro-3methoxy-4-(trifluoromethyl)pentane], PF-7600 [1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3hexafluoropropoxy)pentane], FC-770 (perfluoro N-alkyl morpholines)were supplied by 3M. Red (630 nm) and green (520 nm) emitting QDs (CdSe/ZnS) for multi-color QD patterning were purchased from PlasmaChem Germany.

[1. X. Zhang, Z. Yang, D. Xie, D. Liu, Z. Chen, K. Li, Z. Li, B. Tichnell and Z. Liu, *Des. Monomers Polym.*, 2018, **21**, 43-54.]

2. Equipment

¹H Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 (400 MHz) spectrometer using the chemical shift of a residual protic solvent (CHCl₃ at δ = 7.24 ppm) as a reference. Multiplicity of the signal was indicated as follows: s (singlet), br s (broad singlet), and m (multiplet). Size exclusion chromatography (SEC) was performed on a Younglin GPC system (YL9100, refractive index detector) by eluting AsahiKlin AK225G at 35 °C. Monodisperse poly(methyl methacrylate) (PMMA; molecular weight from 860 to 2,200,000; Shodex, Showa-Denko) was used as a reference standard for the SEC measurements. Differential scanning calorimetry (DSC; Pyris Diamond DSC, Perkin-Elmer) was used to measure the glass transition temperature (T_g) of polymers at a heating/cooling rate of 10 °C min⁻¹ under a N₂ atmosphere during the heating/cooling/heating cycles. Thermogravimetric analysis (TGA, NETZSCH TG 209 F3 Tarsus) was carried out at a heating rate of 10 °C min⁻¹ under a N₂ atmosphere. The melting points of the monomers were measured using an IA9300 digital melting point apparatus from Electrothermal. UV irradiation was carried out using a spot-type UV-LED exposure apparatus (365 nm single wavelength) manufactured by SMT UV Technology, South Korea, and a MJB4 Mask Aligner (Hg light source with deep UV cut off) manufactured by SUSS MicroTec. Thin film thickness and surface profiles were obtained by using an Alpha-Step D-300 Stylus Profiler manufactured by KLA-Tencor. Scanning electron microscopy (SEM) images of the photo-patterned films were obtained using a Hitachi SU 8010. Photo patterned two-color quantum dot films were observed using a metallurgical-metallographic microscope during irradiation with the spot-type UV-LED. Oxygen plasma treatment was performed by CUTE-1MPR (Femto Science).

3. Synthesis

Benzil monoxime (BMO) 3

A solution of benzil **1** (4.31 g, 20.5 mmol), hydroxylamine hydrochloride **2** (1.40 g, 20.1 mmol), and sodium acetate trihydrate (3.0 g) in EtOH was heated to 90 °C and stirred for 3 h. After the reaction was complete according to thin layer chromatography (silica gel, EtOAc:hexane = 1 : 3), the solution was cooled to r.t. The organic layer was diluted with EtOAc (100 cm³) and washed twice with water (100 cm³). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was precipitated in hexane to give benzilmonoxime (**BMO**, **3**) as a white solid. (3.6 g, 78%); mp 161 °C; ¹H-NMR (400 MHz, CDCl₃): δ = 8.24 (br s, 1 H, OH), 8.05–7.30 (m, 10 H, Ar-H).

Benzilmonoxime methacrylate (BMOMA) 5

BMO (3.00 g, 13.3 mmol), Et₃N (2.7 g, 27 mmol), and BHT (1.0 mg) were dissolved in CH_2Cl_2 (100 cm³) and cooled to 0 °C. Methacryloyl chloride **4** (2.78 g, 26.6 mmol) dissolved in CH_2Cl_2 (10 cm³) was added dropwise to the cooled solution. The reaction mixture was allowed to warm up to r.t. and stirred for 4 h. After the reaction was complete according to thin layer chromatography (silica gel, CH_2Cl_2 : hexane =

2:1), the reaction was quenched with the addition of an aqueous HCl solution, and the organic layer was recovered and washed twice with water (100 cm³). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was recrystallized three times from EtOH to give a white crystalline solid, benzilmonoxime methacrylate (**BMOMA**, 2.2 g, 56%); mp. 158 °C; ¹H-NMR (400 MHz, CDCl₃): δ = 8.00–7.36 (m, 10 H, Ar-*H*), 5.72 (s, 1 H, C=C*H*₂), 5.42 (s, 1 H, C=C*H*₂), 1.70 (s, 3 H, C*H*₃).

Copolymerization of PFB-X (X= 1, 2, 3), PFBI and PFI

FOMA (1.18 g), **BMOMA** (0.20 g), AIBN (5.6 mg), CPDTC (23.5 mg), THF (1.5 cm₃), and BTF (1.5 cm³) were added to a 25 cm³ Schlenk tube. It was sealed and degassed via three freeze-pump-thaw cycles using liquid N₂ under reduced pressure and finally purged with N₂. The solution was stirred magnetically at 80 °C for 12 h. The solution was poured into MeOH, and the precipitate was filtered and dried under reduced pressure to yield **PFB-1** (1.1 g, 80%) as a pale yellow powder; ¹H-NMR (400 MHz, CDCl₃ + CF₂Br₂): δ = 8.08–7.28 (m), 4.25 (br s), 2.48 (br s), 2.17–0.49 (m). **PFB-2** and **PFB-3** were polymerized using the same method of **PFB-1** except the monomer feed; for **PFB-2**, **FOMA** (1.18 g), **BMOMA** (0.4 g), and for **PFB-3**, **FOMA** (1.18 g), **BMOMA** (0.6 g).

In the case of **PFBI**, **FOMA** (5.00 g), **BMOMA** (0.85 g), **IBMA** (1.42 g), AIBN (23.8 mg), CPDTC (0.1 g), THF (7 cm³) and BTF (7 cm³) were added to a 50 cm³ Schlenk tube. The reaction procedure was the same as that of **PFB-1**. The yield of **PFBI** was 87% (6.3 g); ¹H-NMR (400 MHz, CDCl₃ + CF₂Br₂): δ = 8.04–7.30 (m), 4.57–4.00 (m), 2.45 (br s), 2.18–0.48 (m).

In the case of **PFI**, **FOMA** (2.0 g), **IBMA** (0.45 g), AIBN (9.5 mg), CPDTC (40 mg), and BTF (2 cm³) were added to a 25 cm³ Schlenk tube. The reaction procedure was the same as that for **PFB-1**

4. Lithographic evaluation

Photopatterning of PFB-X (X = 1, 2, 3)

PFB-X [10% (w/v) over the coating solvent] were dissolved in PF-7600. The solution was spin-coated on a Si substrate at 1000 rpm (200 rpm s⁻¹) for 60 s to form **PFB-1**, **PFB-2**, or **PFB-3** film. The substrate was baked at 80 °C for 3 min and exposed to UV light through a photomask. Suitable exposure doses were 2.4 J cm⁻², 4.0 J cm⁻², and 0.6 J cm⁻² for **PFB-1**, **PFB-2**, and **PFB-3**, respectively. The substrates were then washed in a mixed solvent of FC-770 and HFE-7300 (10:1 by volume for **PFB-1** and 4:1 by volume for **PFB-2**) for 120 s and in a mixture of FC-770 and HFE-7200 (1 : 3 by volume for **PFB-3**) and rinsed with FC-770.

Image contrast measurement of PFBI

A 10% (w/v) **PFBI** solution in PF-7600 was spin-coated on a Si substrate (1000 rpm, 500 rpm s⁻¹, duration: 50 s) and it was baked at 80 °C for 3 min. The **PFBI** film thickness was 405 nm. The substrate was irradiated with 365 nm UV-LED light at increasing irradiation doses from 100 mJ cm⁻² to 6,000 mJ cm⁻². The exposed film was dipped

into HFE-7300 for 2 min, rinsed with FC-770, and the remaining film thickness was measured with a surface profiler. Dose-to-clear was approximately 2,300 mJ cm⁻².

5. Multi-color QD film patterning

A 20% (w/v) **PFBI** solution in PF-7600 was spin-coated on a Si substrate (1000 rpm, 200 rpm s⁻¹, duration: 50 s) and it was baked at 80 °C for 3 min. The film thickness was 1.4 μm. UV irradiation was performed using an MJB4 aligner with a dose of 2.3 J cm⁻², and the irradiated substrate was immersed into HFE-7300 for 7 min and rinsed with FC-770 to form a stencil. The thickness of the 60 μm x 180 μm elliptical pattern was approximately 1.2 μm. The 1st red emitting CdSe/ZnS QD solution in hexane (10 mg cm⁻³) was spin-coated (4000 rpm, acceleration: 4000 rpm s⁻¹, duration: 40 s) on the substrate and baked at 80 °C for 5 min. The QD-deposited **PFBI** substrate was baked at 180 °C for 10 min and cooled to r.t. and washed in HFE-7300 for 10 min to lift-off the stacked film of the stencil and QD. The patterning of the 2nd green emitting QDs (10 mg cm⁻³) in hexane was conducted repeatedly following the same procedure as the 1st QDs. The thickness of the resulting 1st and 2nd QD films were 30 and 25 nm, respectively.

6. Solubility test of O₂ plasma-treated PFBI and PFI films

The thicknesses of the starting **PFBI** and **PFI** films were 1.3 μ m and 360 nm, respectively. An isotropic O₂ plasma treatment was conducted on both films for 60 s (2 sccm, 50 W, 50 kHz). After treatment, both films were immersed into PF-7600 for 30 min. The remaining thickness of both films was measured in every 5 min.

7. Lift-off test of the O₂ plasma-treated stencil and QD stacked film

A stencil of **PFBI** was prepared by the same multi-color QD film patterning procedure. An O₂ plasma treatment was carried out for 60 s onto the stencil, and blanket UV exposure (8 J cm⁻²) using MJB4 mask aligner was performed. The red CdSe/ZnS QD solution in hexane was then spin-coated onto the stencil film and the substrate was baked at 80 °C for 5 min. The QD-deposited substrate was baked at 180 °C for 20 min, co oled to r.t., dipped in PF-7600 for 20 minutes, and sonicated for 5 s to lift off the QDs.

Fig. S1 ¹H-NMR of monomers [(a) **BMO**, (b) **BMOMA**], and polymers [(c) **PFB-1**, (d) **PFB-2**, (e) **PFB-3**, (f) **PFBI** and (g) **PFI**]. (Continued)

Fig. S1 ¹H-NMR of monomers [(a) **BMO**, (b) **BMOMA**], and polymers [(c) **PFB-1**, (d) **PFB-2**, (e) **PFB-3**, (f) **PFBI** and (g) **PFI**]. The inset image is a magnification of benzil parts in (f).

Fig. S2 TGA results of (a) PFB-1, (b) PFB-2, (c) PFB-3 and (d) PFBI.

Fig. S3 DSC results of (a) PFB-1, (b) PFB-2 and (c) PFB-3 and (d) PFBI.

Fig. S4 Chemical structure of fluorous solvents used in the study.

Fig. S5 Optical microscopic images of (a) PFB-1, (b) PFB-2, (c) PFB-3 and (d) PFBI pattern film.

Fig. S6 ¹H-NMR of **PFBI** after (a) UV and (b) 200 °C, 15 min and (c) 30 min treatment. The inset images are a magnification of benzil parts.

Fig. S7 (a) A photograph of the latent image of a **PFBI** film after UV exposure and baking at 80 °C for 1 min. (b) **PFBI** film thickness difference with or without exposure in the latent image (a).