Autonomous self-healing polyisoprene elastomer with high modulus and good toughness based on synergy of dynamic ionic crosslinks and highly disordered crystals

Yohei Miwa,^{1,†,*} Mayu Yamada,¹ Yu Shinke,² and Shoichi Kutsumizu¹

¹Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu

University, Yanagido, Gifu 501-1193, Japan.

²The Yokohama Rubber Co., Ltd., Hiratsuka, 254-8601, Japan.

[†]PRESTO, Japan Science and Technology Agency.

*Author to whom correspondence should be addressed.

E-mail: y_miwa@gifu-u.ac.jp

Table of Contents

<Supporting Figures>

Fig. S1. ¹³C-NMR spectrum for *cis*-PI used in this work.

Fig. S2. FT–IR spectra for the indicated samples. Bands at 1708 cm⁻¹ and 1585 cm⁻¹ are assigned to v(C=O) of carboxy and $v(O-C-O^{-})$ of sodium carboxylate, respectively.

Fig. S3. First heating and first cooling processes of CPI/TPI blend containing 20wt% of TPI.

Eq. S1. Calculation of penetration depth of infrared rays in the ATR FT-IR measurement

Fig. S1. ¹³C-NMR spectrum for *cis*-PI used in this work.

Fig. S2. FT–IR spectra for the indicated samples. Bands at 1708 cm⁻¹ and 1585 cm⁻¹ are assigned to v(C=O) of carboxy and $v(O - C - O^{-})$ of sodium

Fig. S3. First heating and first cooling processes of CPI/TPI blend containing 20wt% of TPI.

$$d_p = \frac{\lambda}{2\pi \sqrt{n_1^2 \sin^2 \theta_1 - n_2^2}} \qquad (S1)$$

*d*_p: Penetration Depth

- λ : Wavelength of Infrared
- θ_1 : Incidence Angle (= 45°)
- n_1 : Refractive Index of Diamond (= 2.42)
- n_2 : Refractive Index of PI (= 1.51)

Eq. S1. Calculation of penetration depth of infrared rays in the ATR FT-IR measurement