# **Supporting Information**

Saccharin-Pendant Methacrylamide as a Unique Monomer in Radical Copolymerization: Peculiar Alternating Copolymerization with Styrene

Yuki Kametani and Makoto Ouchi\*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Corresponding to <u>ouchi@living.polym.kyoto-u.ac.jp</u>

#### Contents

| General Information • • • • • • • • • • • • • • • • • • •                                              |
|--------------------------------------------------------------------------------------------------------|
| Experimental Section · · · · · · · · · · · · · · · · · · ·                                             |
| Procedures to Determine the Monomer Reactivity Ratio ••••••••••••••••••••••••••••••••••••              |
| Solubility of the Alternating Copolymer of 1 and Styrene • • • • • • • • • • • • • • • • • •           |
| Terpolymerization of EMI, Styrene and MMA · · · · · · · · · · · · · · · · · ·                          |
| Bond Dissociation Energy · · · · · · · · · · · · · · · · · · ·                                         |
| Model Reaction of Side-chain Conversion • • • • • • • • • • • • • • • • • • •                          |
| <sup>1</sup> H <sup>13</sup> C NMR and FT-IR Spectra of the Products · · · · · · · · · · · · · · · P16 |
| DSC Measurement · · · · · · · · · · · · · · · · · · ·                                                  |
| Computational Study for Radical Polymerization Behavior · · · · · · · · · · · · · · · · · · ·          |

#### **General Information**

#### Materials

For synthesis: Saccharin (TCI, >99%), methacryloyl chloride (TCI, >90%), triethylamine (TCI, >99%), pivaloyl chloride (TCI, >98%), *n*-dibutylamine (TCI, >99%), *n*-hydroxy succinimide (TCI, >98.0%), trifluoroacetic acid (TCI, >99.0%), trimethylsilyl diazomethane (Aldrich, 2M solution in Et<sub>2</sub>O), acetic acid (Wako, >99.9%), tetrahydrofuran (Wako, dehydrated), dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>: Wako) and toluene (Wako, >99.5%) were used without purification. For dialysis, MWCO1000 (Spectra/PorVR7, diameter 29 mm), methanol (Wako, >99.5%) and acetone (Wako, >99.0%) were used.

**For polymerization:** 2,2'-azobis (isobutylonitrile) (TCI, >98%) and *N*-methyl methacrylamide (TCI, >98.0%) N-ethyl maleimide (TCI, 98.0%), were used as received without further purification. Styrene (TCI, 99.0%) methyl methacrylate (TCI, >99.8%), methyl acrylate (TCI, >99.0%) and vinyl acetate (TCI) were dried overnight over calcium chloride and purified by distillation under reduced pressure over calcium hydride. *p*-methoxy styrene was washed with 10% aqueous sodium hydroxide and then with saturated aqueous sodium chloride, dried overnight over sodium sulfate, and distilled under reduced pressure. p-nitrostyrene (TCI, >98.0%) was passed through inhibitor remover (Aldrich) column to remove inhibitor before use. Acetonitrile (Wako) was dried by molecular sieves 4A (Wako) and bubbled with dry nitrogen for more than 15 min before use. 1,4-dioxane (Wako, >99.5%) was bubbled with dry nitrogen for more than 15 min before use. For reprecipitation, Acetone (Wako, >99.0%) or methanol (Wako, >99.5%) were used.

#### Measurements

NMR spectra were measured on a JEOL JNM-ECA500 spectrometer operating at 500.16 MHz (<sup>1</sup>H) and 125.04 MHz (<sup>13</sup>C) at room temperature (<sup>13</sup>C NMR of polymers were measured at 55°C). Number-average molecular weight ( $M_n$ ) and  $M_w/M_n$  ratio of polymers were measured by size exclusion chromatography (SEC) at 40°C in in THF as an eluent on two polystyrene-gel columns (TOSOH TSKgel Super Multipore HZ-M). The columns were calibrated against standard polystyrene samples (TOSOH PStQuick series).

#### **Computational Study**

The Gaussian 16 program package3 was used for computation.<sup>1</sup> The density functional theory (DFT) was applied for the optimization of the structures and vibrational analysis at B3LYP/6-31G\* level.

## **Experimental Section**

#### **Monomer Synthesis**



Scheme S1. Synthesis of saccharin methacrylamide (1)

#### Synthesis of Saccharin methacrylamide (1)

Saccharin (91.75 g, 500 mmol) was placed in round-bottom-flask under dry argon and dissolved in THF (1 L). Then, triethylamine (73.2 mL, 525 mmol) and methacryloyl chloride (47.8 mL, 510 mmol) were added at 0 °C and stirred for 5 hours at 0 °C. The reaction was quenched by methanol (1 mL). The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The resulting mixture was dissolved in  $CH_2Cl_2$  and washed with saturated NaHCO<sub>3</sub> aq. and brine. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated. The obtained solid were purified by recrystallization in toluene to yield **1** (93.87 g, 374 mmol, 75%) as a white solid (melting point: ~143 °C).

<sup>1</sup>H NMR (500 MHz, chloroform-d): δ(ppm) 8.14 (d, 1H), 8.01-7.88 (m, 3H), 5.80 (s, 1H), 5.79 (s, 1H), 2.09 (s, 3H)

<sup>13</sup>C NMR (125 MHz, chloroform-d): δ (ppm) 167.10, 157.61, 139.46, 138.29, 136.51, 135.03, 126.36, 126,21, 125.67, 121.35, 18.00



Scheme S2. Synthesis of N,N-dibutyl methacrylamide (2)

#### Synthesis of N,N-dibutyl methacrylamide (2)

Dibutylamine (4.25 mL, 25.0 mmol) and triethylamine (4.18 mL, 30.0 mmol) were dissolved in ethyl acetate in round-bottom-flask. Then, methacryloyl chloride (2.60 mL, 27.5 mmol) were added at 0 °C and stirred for 2 hours at room temperature. The reaction was quenched by methanol (3 mL). The reaction mixture washed with saturated NaHCO<sub>3</sub> aq. 3 times and brine. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated. The obtained oil was purified with column chromatography (hexane; EtOAc = 3.1 as eluent) to yield 2 (3.94 g, 20.0 mmol, 80%) as a slightly yellow oil.

<sup>1</sup>H NMR (500 MHz, chloroform-d): δ (ppm) 5.10 (m, 1H), 4.98 (m, 1H), 3.31 (broad doublet, 4H), 1.95 (m, 1H), 1.52 (broad, 4H), 1.30 (broad, 4H), 0.92 (broad triplet, 6H)



Scheme S3. Synthesis of *N*-hydroxysuccinimide methacrylate (3)

#### Synthesis of N-hydroxysuccinimide methacrylate (3)

*N*-hydroxysuccinimide (2.28 g, 20 mmol) was placed in round-bottom-flask under dry argon and dissolved in THF (20 mL). Then, triethylamine (3.35 mL, 24 mmol) and methacryloyl chloride (2.28 mL, 24 mmol) were added at 0 °C and stirred for 24 hours at room temperature. The reaction was quenched by water (1 mL). The reaction mixture was diluted with EtOAc and washed with saturated NaHCO<sub>3</sub> aq. two times and brine. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated. The obtained solid were purified by recrystallization in mixed soluvent of hexane-AcOEt to yield 3 (3.08 g, 17 mmol, 85%) as a white crystal.

<sup>1</sup>H NMR (500 MHz, chloroform-d):  $\delta$  (ppm) 6.41 (s, 1H), 5.88 (s, 1H), 2.85 (s, 4H), 2.05 (s, 3H).

#### **Model compound Synthesis**



Scheme S4. Synthesis of model compound

#### Synthesis of Saccharin pivalamide

Saccharin (9.44 g, 51.5 mmol) was placed in round-bottom-flask under dry argon and dissolved in THF (150 mL). Then, triethylamine (8.62 mL, 61.8 mmol) and pivaloyl chloride (6.94 mL, 56.7 mmol) were added at 0 °C and stirred for 5 hours at room temperature. The reaction was quenched by methanol (1 mL). The reaction mixture was filtered. The filtrate was diluted with EtOAc and washed with saturated NaHCO<sub>3</sub> aq. and brine. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated. The obtained solid were purified by recrystallization in toluene to yield saccharin pivalamide (3.35 g, 12.5 mmol, 24%) as a white solid.

<sup>1</sup>H NMR (500 MHz, chloroform-d): δ(ppm) 8.14 (d, 1H), 7.98-7.86 (m, 3H), 1.44 (s, 9H)

#### **Polymerization**



Scheme S5. Alternating copolymerization of 1 and styrene

#### Copolymerization of saccharin methacrylamide and styrene

In a round bottom flask was placed AIBN (88.4 mg, 0.538 mmol) and SacM (10.87 g, 43.3 mmol) under argon. Degassed dioxane (18.83 mL), acetonitrile (18.83 mL), tetralin (0.5 mL) and styrene (4.97 mL, 43.3 mmol) were added at room temperature under argon. When the time-conversion plot was investigated, aliquots (ca. 0.7 mL each) of the solution were distributed with a syringe into glass tubes that were then sealed. The reaction mixture was placed in an oil bath kept at desired temperature. In predetermined intervals, the polymerization was terminated by cooling in dry ice-methanol. Monomer conversion was determined by <sup>1</sup>H NMR from the peak area of the olefinic protons of the monomer with tetralin as an internal standard. The quenched reaction solutions were poured into acetone to purify by reprecipitation. The copolymer of 1 and styrene were obtained as a colorless solid (5.62 g). Other polymerizations are performed in a similar procedure.



Scheme S6. Random copolymerization of MMA and styrene

#### **Copolymerization of MMA and Styrene**

In a round bottom flask was placed AIBN (13.9 mg, 0.0846 mmol). Degassed dioxane (3.43 mL), acetonitrile (3.43 mL), tetralin (0.08 mL), MMA (0.724 mL, 6.77 mmol) and styrene (0.778 mL, 6.77 mmol) were added at room temperature under argon. The reaction mixture was placed in an oil bath kept at desired temperature. After 24 h reaction, the polymerization was terminated by cooling in dry ice-methanol. Monomer conversion was determined by <sup>1</sup>H NMR from the peak area of the olefinic protons of the monomer with tetralin as an internal standard. The quenched reaction solutions were poured into methanol to purify by reprecipitation. The copolymer of MMA and styrene were obtained as a colorless solid ( $M_n = 16700$ ,  $M_w/M_n = 1.45$ ).



Scheme S7. Radical copolymerization of MMA and styrene in the presence of EtAlCl<sub>2</sub>

#### Radical copolymerization of MMA and styrene in the presence of EtAlCl<sub>2</sub>

MMA (0.428 mg, 4 mmol) and EtAlCl<sub>2</sub> solution in toluene (1.8M, 0.889 mL, 1.60 mmol) were stirred for 8 h at room temperature under argon in a baked grass tube equipped with a three-way stopcock. In another grass tube, AIBN (12.2 mg, 0.0743 mmol), toluene, tetralin (0.20 mL), and styrene (1.858 mL, 16.2 mmol) were mixed under argon. The styrene solution (3.68 mL) was then added to the solution of MMA-EtAlCl<sub>2</sub>. The reaction mixture was placed in an oil bath kept at 60 °C temperature. After 45 min reaction, the polymerization was terminated by cooling in dry ice-methanol. The quenched reaction solutions were diluted by dichloromethane, and poured into methanol to purify by reprecipitation. The copolymer of MMA and styrene were obtained as a colorless solid ( $M_n = 519700$ ,  $M_w/M_n = 1.70$ ).

**Side-chain conversion** 



Scheme S8. Hydrolysis of side-chain

Alternating copolymer of **1** and styrene (1.03 g, mmol) was suspended in mixed solvent of TFA:  $H_2O = 10:1 \text{ (v/v)} 22 \text{ mL}$ . The mixture was stirred for 24 h at 80 °C. Then, the reaction mixture was poured into Et<sub>2</sub>O to remove TFA. The precipitated mixture of polymer and saccharin was purified by dialysis with methanol: acetone = 9:1 (v/v) to obtain MAA-styrene alternating copolymer as slightly brown solid (0.502 g, 91%).



Scheme S9. Methylation of MAA unit

MAA-styrene alternating copolymer (83.4 mg, 0.438 mmol of carboxyl group) was dissolved in mixed solvent of toluene and methanol (10 mL, 4:1, v/v). Trimethyl silyl diazomethane (2 M in Et<sub>2</sub>O, 0.329 mL, 0.657 mmol) was slowly added to the solution at room temperature. After 24h stirring, AcOH was slowly added in ice bath to quench the reaction. Resultant solution was diluted with toluene and washed with water 3 times and then brine, dried over Na<sub>2</sub>SO<sub>4</sub>, then evaporated. ( $M_n = 22300$ ,  $M_w/M_n = 1.58$ )

#### **Procedures to Determine Monomer Reactivity Ratio**

The monomer reactivity ratio was calculated by setting 1 as  $M_1$  and styrene as  $M_2$ . Copolymerizations of 1 and styrene were performed with AIBN by changing the injection ratio  $([M_1]_0:[M_2]_0 = 900:100, 700:300, 500:500, 300:700, and 100:900 mM)$ . Typical procedure of the copolymerization is as follows. In a Schlenk tube was placed 1 (381.9 mg, 1.52 mmol) under dry argon. Then, dioxane (1.33 mL), MeCN (1.33 mL), tetralin (internal standard, 0.03 mL), styrene (0.175 mL, 1.52 mmol) and AIBN (0.304 mL of 100 mM stock solution in Dioxane-MeCN = 1:1 (v/v), 30.4 µmol) were added at room temperature under dry argon (5:5 injection condition). For immediately after mixing, aliquots (ca. 1.0 mL each) of the solution were distributed with a syringe into glass tubes that were then sealed. The tube was placed in an oil bath kept at  $60^{\circ}$ C for 2 h. The reaction was terminated by cooling the solution to 0  $^{\circ}$ C. The composition ratio of copolymer [F =  $DP_{n,1}/(DP_{n,1} + DP_{n,2})$ ] was determined from the conversion ratio [Conv.(M<sub>1</sub>)/(Conv.(M<sub>1</sub>) + Conv. (M<sub>2</sub>))] by <sup>1</sup>H NMR (in CDCl<sub>3</sub>) with tetralin as an internal standard. The actual monomer feed ratio  $[f = [M_1]_0/([M_1]_0 + [M_2]_0)]$  was also determined with by <sup>1</sup>H NMR spectrum (before heating). These values are listed in Table S1. The monomer reactivity ratios were then calculated via Kelen-Tüdős method<sup>2</sup> with the f and F values. The arbitrary constant for the method,  $\alpha = 1.27$ .



**Figure S1.** Determination of monomer reactivity ratio of 1 and styrene by Kelen-Tüdős method. Polymerization conditions: [total monomer]<sub>0</sub>/[AIBN]<sub>0</sub> = 1000/10 mM in Dioxane-MeCN = 1:1 (v/v) at 60 °C

| Before polymn. After p |                          | olymn. | Conversion. |             |             |             |             |
|------------------------|--------------------------|--------|-------------|-------------|-------------|-------------|-------------|
| 1+St <sup>a,b</sup>    | St <sup><i>a,c</i></sup> | 1+St   | St          | 1           | St          | f           | F           |
| 473.74                 | 22.65                    | 456.81 | 18.11       | 2.746680263 | 20.04415011 | 0.908741111 | 0.577084304 |
| 474.80                 | 77.70                    | 438.38 | 66.23       | 6.283052128 | 14.76190476 | 0.718733032 | 0.520985592 |
| 363.85                 | 112.37                   | 317.12 | 96.84       | 12.40655321 | 13.8204147  | 0.528075259 | 0.501124317 |
| 403.49                 | 205.59                   | 358.10 | 189.80      | 14.95704901 | 7.680334647 | 0.324916267 | 0.483818241 |
| 401.05                 | 319.88                   | 368.48 | 306.61      | 23.77725761 | 4.148430661 | 0.112590681 | 0.421029668 |

Table S1. Data for determine monomer reactivity ratio

*a*) Integration standard is benzyl proton of tetralin (2.7 ppm) as 100,

b) peaks at 5.6-5.8 ppm, sum of 2 protons of 1 and 1 proton of styrene,

*c*) peaks at 5.1-5.2 ppm

# Solubility of the alternating copolymer of 1 and styrene

| Solvent           | Solubility                 | Solvent                     | Solubility                   |
|-------------------|----------------------------|-----------------------------|------------------------------|
| Water             | Insoluble                  | THF                         | Insoluble (swollen)          |
| Toluene           | Insoluble (little swollen) | Dioxane                     | Insoluble (a little swollen) |
| Methanol          | Insoluble                  | Acetonitrile                | Insoluble                    |
| Acetone           | Insoluble                  | Dioxane: Acetonitrile = 1:1 | Soluble                      |
| DMF               | Soluble (decomposition)    | Ethyl acetate               | Insoluble                    |
| DMSO              | Soluble (decomposition)    | Pyridine                    | Insoluble (swollen)          |
| $CH_2Cl_2$        | Insoluble (Swollen)        | Acetic Acid                 | Insoluble                    |
| CHCl <sub>3</sub> | Insoluble (little swollen) |                             |                              |

Table S2. Solubility of the alternating copolymer of 1 and styrene

#### Terpolymerization of EMI, styrene and MMA



Figure S2. Time-conversion plot for terpolaymerization of EMI, Styrene, and, MMA Polymerization conditions:  $[EMI]_0/[Styrene]_0/[MMA]_0/[AIBN]_0 = 800/800/800/10 \text{ mM}$  in Dioxane-MeCN = 1:1 (v/v) at 60 °C.

## **Bond Dissociation Energy**



Figure S3. Bond dissociation energy for H<sub>2</sub> adduct of monomers

### Model reaction of side-chain conversion

DMAP (21.5 mg, 0.176 mmol), MeOH (17.8  $\mu$ L 0.440 mmol), and CDCl<sub>3</sub> (0.4 mL) were mixed in glass tube. The mixture was added CDCl<sub>3</sub> solution of saccharin pivalamide (200 mM, 0.440 mL, 0.088 mmol) at room temperature. The salt of saccharin and DMAP was precipitated. <sup>1</sup>H NMR was measured after 5 h reaction.



Figure S4. Model reaction for side-chain conversion:  $[saccharin pivalamide]_0/[MeOH]_0/[DMAP]_0 = 100/500/200 \text{ mM in CDCl}_3 \text{ at room temperature.}$ 

# <sup>1</sup>H, <sup>13</sup>C NMR and FT-IR Spectra of the Products



Figure S5. <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub> at room temperature) of **1**.



Figure S6. <sup>13</sup>C NMR spectra (in Acetone- $d_6$ , at room temperature) of 1 in comparison with the precursor, saccharin.



Figure S7. FT-IR Spectrum of 1 in comparison with saccharin.



**Figure S8.** <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub>, at room temperature) of the mixture of **1** and styrene (middle) in comparison with **1** (upper) and styrene (lower).



Figure S9. <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub> at room temperature) of saccharin pivalamide.



Figure S10. <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub> at room temperature) of 2.



Figure S11. <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub> at room temperature) of **3**.



**Figure S12.** <sup>1</sup>H NMR spectrum (in CD<sub>3</sub>OD at room temperature) and composition calculation of MAA-Styrene alternating copolymer synthesized from **1**.



```
The fraction of triad sequence (F_{MMM}, 2F_{MMS}, F_{SMS})
```

 $F_{\mathbf{x}} = F_{\mathsf{MMM}} + 2(1 - \sigma)F_{\mathsf{MMS}} + (1 - \sigma)^2F_{\mathsf{SMS}} = 0.400$   $F_{\mathbf{y}} = 2\sigma F_{\mathsf{MMS}} + 2\sigma(1 - \sigma)F_{\mathsf{SMS}} = 0.432 \implies F_{\mathsf{MMS}} = -0.29$   $F_{\mathsf{z}} = \sigma^2 F_{\mathsf{SMS}} = 0.168 \qquad F_{\mathsf{SMS}} = 1.15$ 

Figure S13. Detailed sequence analysis of the MMA-Styrene copolymer synthesized from 1.



**Figure S14.** <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub> at room temperature) of MAA-Styrene alternating copolymer synthesized via radical copolymerization in presence of EtAlCl<sub>2</sub>.



Figure S15. <sup>13</sup>C NMR spectrum (in CDCl<sub>3</sub> at 55  $^{\circ}$ C) of MAA-Styrene alternating copolymer synthesized from 1.



Figure S16. <sup>13</sup>C NMR spectrum (in CDCl<sub>3</sub> at 55 °C) of MAA-Styrene statistical copolymer.



Figure S17. Sequence analysis by  $^{13}\text{C}$  NMR spectra (in CDCl3 at 55 °C).



Figure S18. FT-IR Spectra of MMA-St copolymers.

#### **DSC** measurement



**Figure S19.** DSC profiles of the alternating copolymer of MMA and styrene obtained via radical copolymerization of **1** with styrene followed by side-chain conversion: Samples are kept at 150°C for 10 min, cooled to 0°C at 10 °C/min (A, 1st cooling), kept at 0°C for 10 min, and then heated to 150 °C at 10 °C/min (B, 2nd heating).

## **Computational Study for Radical Polymerization Behavior**

Model for chain end radical of saccharin methacrylamide





SOMO energy: -0.22838 eV

Sum of electronic and thermal Energies: -1178.718609 (Hartree/Particle)

Standard orientation:

-----

| Atomic | Atomic           | Coord                                                                                                                                                           | linates (Angst                                                                                                                                                                                                                                                   | roms)                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number | Туре             | Х                                                                                                                                                               | Y                                                                                                                                                                                                                                                                | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                  | 2 402558                                                                                                                                                        | 1.012720                                                                                                                                                                                                                                                         | 0.212(14                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0      | 0                | -2.402558                                                                                                                                                       | 1.913/20                                                                                                                                                                                                                                                         | -0.312014                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6      | 0                | -3.733902                                                                                                                                                       | 1.571615                                                                                                                                                                                                                                                         | -0.069240                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6      | 0                | -4.088108                                                                                                                                                       | 0.257400                                                                                                                                                                                                                                                         | 0.262633                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6      | 0                | -3.120211                                                                                                                                                       | -0.748014                                                                                                                                                                                                                                                        | 0.355274                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6      | 0                | -1.802473                                                                                                                                                       | -0.383708                                                                                                                                                                                                                                                        | 0.114280                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6      | 0                | -1.434314                                                                                                                                                       | 0.917000                                                                                                                                                                                                                                                         | -0.214358                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16     | 0                | -0.383336                                                                                                                                                       | -1.471460                                                                                                                                                                                                                                                        | 0.100164                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7      | 0                | 0.693276                                                                                                                                                        | -0.096327                                                                                                                                                                                                                                                        | -0.153588                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6      | 0                | 0.028037                                                                                                                                                        | 1.107715                                                                                                                                                                                                                                                         | -0.421425                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8      | 0                | 0.567776                                                                                                                                                        | 2.144596                                                                                                                                                                                                                                                         | -0.758662                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8      | 0                | -0.448062                                                                                                                                                       | -2.337643                                                                                                                                                                                                                                                        | -1.069891                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8      | 0                | -0.094610                                                                                                                                                       | -2.022727                                                                                                                                                                                                                                                        | 1.420977                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6      | 0                | 2.112460                                                                                                                                                        | -0.343406                                                                                                                                                                                                                                                        | -0.295945                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8      | 0                | 2.469484                                                                                                                                                        | -1.391777                                                                                                                                                                                                                                                        | -0.830191                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Atomic<br>Number | Atomic Atomic   Number Type   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   6 0   7 0   6 0   8 0   8 0   8 0   8 0   8 0 | Atomic Atomic Coord   Number Type X   6 0 -2.402558   6 0 -3.733902   6 0 -4.088108   6 0 -4.088108   6 0 -3.120211   6 0 -1.802473   6 0 -1.434314   16 0 -0.383336   7 0 0.693276   6 0 0.028037   8 0 -0.448062   8 0 -0.094610   6 0 2.112460   8 0 2.469484 | AtomicAtomicCoordinates (AngstNumberTypeXY60 $-2.402558$ $1.913720$ 60 $-3.733902$ $1.571615$ 60 $-4.088108$ $0.257400$ 60 $-3.120211$ $-0.748014$ 60 $-3.120211$ $-0.748014$ 60 $-1.802473$ $-0.383708$ 60 $-1.434314$ $0.917000$ 160 $-0.383336$ $-1.471460$ 70 $0.693276$ $-0.096327$ 60 $0.28037$ $1.107715$ 80 $-0.448062$ $-2.337643$ 80 $-0.094610$ $-2.022727$ 60 $2.112460$ $-0.343406$ 80 $2.469484$ $-1.391777$ |

| 15 | 6 | 0 | 3.029652  | 0.616170  | 0.267762  |
|----|---|---|-----------|-----------|-----------|
| 16 | 6 | 0 | 4.466669  | 0.502518  | -0.127028 |
| 17 | 6 | 0 | 2.650258  | 1.647051  | 1.280252  |
| 18 | 1 | 0 | -2.107303 | 2.925539  | -0.570898 |
| 19 | 1 | 0 | -4.505877 | 2.332261  | -0.137588 |
| 20 | 1 | 0 | -5.129675 | 0.012109  | 0.447906  |
| 21 | 1 | 0 | -3.389500 | -1.769111 | 0.604993  |
| 22 | 1 | 0 | 5.076462  | 0.185806  | 0.732406  |
| 23 | 1 | 0 | 4.855215  | 1.482364  | -0.437840 |
| 24 | 1 | 0 | 4.608762  | -0.219244 | -0.932299 |
| 25 | 1 | 0 | 3.448108  | 1.748086  | 2.026009  |
| 26 | 1 | 0 | 2.515450  | 2.628612  | 0.805902  |
| 27 | 1 | 0 | 1.719033  | 1.403276  | 1.798489  |
|    |   |   |           |           |           |

Mulliken charges and spin densities:

-----

|    |   | 1         | 2         |
|----|---|-----------|-----------|
| 1  | С | -0.150574 | 0.000277  |
| 2  | С | -0.133202 | -0.000163 |
| 3  | С | -0.111689 | 0.000414  |
| 4  | С | -0.162162 | -0.000279 |
| 5  | С | -0.194806 | 0.000738  |
| 6  | С | 0.095483  | -0.000511 |
| 7  | S | 1.233789  | -0.000165 |
| 8  | N | -0.727025 | -0.002220 |
| 9  | С | 0.580947  | 0.002832  |
| 10 | 0 | -0.483579 | 0.001809  |
| 11 | 0 | -0.457988 | 0.000064  |
| 12 | 0 | -0.480991 | 0.001541  |
| 13 | С | 0.545202  | -0.057904 |
| 14 | 0 | -0.439296 | 0.287993  |
| 15 | С | 0.165162  | 0.746840  |
| 16 | С | -0.515827 | -0.058271 |

| 17    | С    | -0.520573 ·      | -0.057971 |         |
|-------|------|------------------|-----------|---------|
| 18    | Н    | 0.176608         | 0.000032  |         |
| 19    | Н    | 0.157852         | 0.000002  |         |
| 20    | Н    | 0.159566         | 0.000001  |         |
| 21    | Н    | 0.182826         | 0.000031  |         |
| 22    | Н    | 0.173934         | 0.037201  |         |
| 23    | Н    | 0.169912         | 0.027898  |         |
| 24    | Н    | 0.198577         | 0.001141  |         |
| 25    | Н    | 0.165014         | 0.015534  |         |
| 26    | Н    | 0.201491         | 0.046199  |         |
| 27    | Н    | 0.171349         | 0.006938  |         |
| Sum o | f Mu | lliken charges = | 0.00000   | 1.00000 |

## Model for chain end radical of methyl acrylate



SOMO energy: -0.22801 eV

Sum of electronic and thermal Energies: -306.934149 (Hartree/Particle)

| Center | Atomic | Atomic | Coordinate | es (Angstroms) |   |
|--------|--------|--------|------------|----------------|---|
| Number | Number | Туре   | Х          | Y              | Ζ |
|        |        |        |            |                |   |

| 1  | 6 | 0 | 1.373191  | 0.514520  | -0.000041 |
|----|---|---|-----------|-----------|-----------|
| 2  | 6 | 0 | 2.238686  | -0.694720 | -0.000057 |
| 3  | 6 | 0 | -0.075563 | 0.520465  | 0.000031  |
| 4  | 1 | 0 | 1.824279  | 1.502091  | 0.000202  |
| 5  | 8 | 0 | -0.756153 | 1.538802  | -0.000018 |
| 6  | 8 | 0 | -0.617164 | -0.731323 | 0.000024  |
| 7  | 6 | 0 | -2.048934 | -0.769001 | -0.000004 |
| 8  | 1 | 0 | -2.315418 | -1.826834 | 0.000636  |
| 9  | 1 | 0 | -2.450220 | -0.272280 | 0.888224  |
| 10 | 1 | 0 | -2.450141 | -0.273426 | -0.888918 |
| 11 | 1 | 0 | 2.903634  | -0.700052 | -0.876845 |
| 12 | 1 | 0 | 2.899595  | -0.702980 | 0.879822  |
| 13 | 1 | 0 | 1.650525  | -1.613934 | -0.002753 |
|    |   |   |           |           |           |

\_\_\_\_\_

Mulliken charges and spin densities:

|                                   |   | 1         | 2         |  |  |  |
|-----------------------------------|---|-----------|-----------|--|--|--|
| 1                                 | С | -0.120513 | 0.891351  |  |  |  |
| 2                                 | С | -0.499033 | -0.067305 |  |  |  |
| 3                                 | С | 0.605100  | -0.079283 |  |  |  |
| 4                                 | Η | 0.163702  | -0.042078 |  |  |  |
| 5                                 | 0 | -0.491288 | 0.190637  |  |  |  |
| 6                                 | 0 | -0.469732 | 0.025882  |  |  |  |
| 7                                 | С | -0.214079 | -0.002956 |  |  |  |
| 8                                 | Η | 0.159452  | 0.000027  |  |  |  |
| 9                                 | Η | 0.167961  | 0.001440  |  |  |  |
| 10                                | Η | 0.167933  | 0.001450  |  |  |  |
| 11                                | Н | 0.170759  | 0.039713  |  |  |  |
| 12                                | Η | 0.170834  | 0.039978  |  |  |  |
| 13                                | Н | 0.188903  | 0.001144  |  |  |  |
| Sum of Mulliken charges = 0.00000 |   |           |           |  |  |  |

29

1.00000

## Model for chain end radical of *N*,*N*-dimethyl methacrylamide



SOMO energy: -0.19682 eV

Sum of electronic and thermal Energies: -365.618539 (Hartree/Particle)

| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |

| Center Atomic A |        | Atomic | Coordinates (Angstroms) |           |           |  |
|-----------------|--------|--------|-------------------------|-----------|-----------|--|
| Number          | Number | Туре   | Х                       | Y         | Z         |  |
| 1               | 6      | 0      | -1.265486               | 0.112395  | -0.012050 |  |
| 2               | 6      | 0      | 0.036046                | -0.575583 | -0.036789 |  |
| 3               | 6      | 0      | -1.515556               | 1.442191  | -0.659552 |  |
| 4               | 6      | 0      | -2.451634               | -0.668283 | 0.457332  |  |
| 5               | 1      | 0      | -0.637062               | 1.829145  | -1.181841 |  |
| 6               | 1      | 0      | -2.331894               | 1.354856  | -1.392079 |  |
| 7               | 1      | 0      | -1.844718               | 2.202686  | 0.066859  |  |
| 8               | 7      | 0      | 1.201955                | 0.182623  | -0.070842 |  |
| 9               | 8      | 0      | 0.078504                | -1.810617 | -0.110239 |  |
| 10              | 6      | 0      | 1.347577                | 1.436075  | 0.655029  |  |
| 11              | 6      | 0      | 2.449358                | -0.534429 | -0.292752 |  |
| 12              | 1      | 0      | 2.878975                | -0.913034 | 0.647396  |  |
| 13              | 1      | 0      | 2.264652                | -1.384297 | -0.948850 |  |
| 14              | 1      | 0      | 3.174859                | 0.143024  | -0.757536 |  |
| 15              | 1      | 0      | 1.811024                | 2.208041  | 0.026850  |  |

| 16 | 5 1 | 0 | 0.379665  | 1.799843  | 0.998966  |
|----|-----|---|-----------|-----------|-----------|
| 17 | 1   | 0 | 1.984375  | 1.293844  | 1.541609  |
| 18 | 8 1 | 0 | -3.062658 | -0.074559 | 1.153281  |
| 19 | ) 1 | 0 | -3.112326 | -0.928747 | -0.385067 |
| 20 | ) 1 | 0 | -2.148446 | -1.598426 | 0.940904  |
|    |     |   |           |           |           |

Mulliken charges and spin densities:

|                                   |   | 1         | 2         |  |  |
|-----------------------------------|---|-----------|-----------|--|--|
| 1                                 | С | 0.094719  | 0.864963  |  |  |
| 2                                 | С | 0.533336  | -0.065932 |  |  |
| 3                                 | С | -0.513942 | -0.070542 |  |  |
| 4                                 | С | -0.497871 | -0.069144 |  |  |
| 5                                 | Н | 0.171107  | 0.002978  |  |  |
| 6                                 | Н | 0.164052  | 0.031164  |  |  |
| 7                                 | Н | 0.157037  | 0.045730  |  |  |
| 8                                 | N | -0.415641 | 0.025576  |  |  |
| 9                                 | 0 | -0.519690 | 0.152236  |  |  |
| 10                                | С | -0.319507 | 0.002803  |  |  |
| 11                                | С | -0.306044 | -0.003521 |  |  |
| 12                                | Н | 0.148393  | 0.002535  |  |  |
| 13                                | Н | 0.190364  | -0.000209 |  |  |
| 14                                | Н | 0.143788  | 0.002511  |  |  |
| 15                                | Н | 0.154592  | -0.000560 |  |  |
| 16                                | Н | 0.169406  | -0.000215 |  |  |
| 17                                | Н | 0.153121  | 0.003107  |  |  |
| 18                                | Н | 0.146512  | 0.029117  |  |  |
| 19                                | Н | 0.159522  | 0.045765  |  |  |
| 20                                | Н | 0.186747  | 0.001638  |  |  |
| Sum of Mulliken charges = 0.00000 |   |           |           |  |  |

1.00000

## Model for chain end radical of Styrene



## SOMO energy: -0.16957 eV

### Sum of electronic and thermal Energies: -1178.718609 (Hartree/Particle)

### Standard orientation:

-----

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 6      | 0      | 0.015479                | 1.057670  | 0.000017  |
| 2      | 6      | 0      | -1.337872               | 1.365857  | 0.000024  |
| 3      | 6      | 0      | -2.302073               | 0.349594  | -0.000015 |
| 4      | 6      | 0      | -1.889618               | -0.990818 | -0.000012 |
| 5      | 6      | 0      | -0.540999               | -1.309477 | 0.000000  |
| 6      | 6      | 0      | 0.461452                | -0.295782 | -0.000050 |
| 7      | 6      | 0      | 1.833140                | -0.646777 | -0.000098 |
| 8      | 6      | 0      | 2.965447                | 0.332473  | -0.000078 |
| 9      | 1      | 0      | 0.747858                | 1.859641  | 0.000190  |
| 10     | 1      | 0      | -1.650590               | 2.407184  | 0.000101  |
| 11     | 1      | 0      | -3.359712               | 0.597622  | -0.000016 |
| 12     | 1      | 0      | -2.631106               | -1.785850 | -0.000008 |
| 13     | 1      | 0      | -0.228211               | -2.351258 | -0.000007 |
| 14     | 1      | 0      | 2.076100                | -1.706802 | 0.000855  |
| 15     | 1      | 0      | 3.931010                | -0.181298 | -0.006864 |
| 16     | 1      | 0      | 2.938520                | 0.996717  | -0.877149 |

\_\_\_\_\_

\_\_\_\_\_

Mulliken charges and spin densities:

\_\_\_\_\_

|        |    | 1              | 2         |         |
|--------|----|----------------|-----------|---------|
| 1      | С  | -0.194015      | 0.245002  |         |
| 2      | С  | -0.124836      | -0.129602 |         |
| 3      | С  | -0.135486      | 0.262709  |         |
| 4      | С  | -0.127434      | -0.127997 |         |
| 5      | С  | -0.190161      | 0.232730  |         |
| 6      | С  | 0.205346       | -0.196478 |         |
| 7      | С  | -0.183677      | 0.768276  |         |
| 8      | С  | -0.490093      | -0.063436 |         |
| 9      | Н  | 0.124196       | -0.011439 |         |
| 10     | Н  | 0.127254       | 0.004965  |         |
| 11     | Н  | 0.127248       | -0.012803 |         |
| 12     | Н  | 0.127544       | 0.004905  |         |
| 13     | Η  | 0.123806       | -0.010724 |         |
| 14     | Η  | 0.131253       | -0.038346 |         |
| 15     | Η  | 0.154715       | 0.001309  |         |
| 16     | Н  | 0.162138       | 0.035209  |         |
| 17     | Н  | 0.162203       | 0.035721  |         |
| Sum of | Mu | lliken charges | = 0.00000 | 1.00000 |

## Model for chain end radical of methyl methacrylate



## SOMO energy: -0.21076 eV

## Sum of electronic and thermal Energies: -346.227137 (Hartree/Particle)

Standard orientation:

| Center | Atomic | Atomic | Coord     | linates (Angst | roms)     |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Туре   | Х         | Y              | Z         |
| 1      | 6      | 0      | -1.092002 | 0.119907       | 0.002134  |
| 2      | 6      | 0      | -1.426240 | 1.577561       | 0.000803  |
| 3      | 6      | 0      | 0.283079  | -0.356896      | 0.001385  |
| 4      | 6      | 0      | -2.189799 | -0.891373      | -0.002322 |
| 5      | 8      | 0      | 0.616035  | -1.536949      | 0.002039  |
| 6      | 8      | 0      | 1.195427  | 0.658712       | -0.000753 |
| 7      | 6      | 0      | 2.564445  | 0.239747       | -0.001415 |
| 8      | 1      | 0      | -2.837803 | -0.762459      | -0.882593 |
| 9      | 1      | 0      | -1.789121 | -1.906426      | -0.003987 |
| 10     | 1      | 0      | -2.841397 | -0.766794      | 0.875899  |
| 11     | 1      | 0      | 3.152976  | 1.158417       | -0.004132 |
| 12     | 1      | 0      | 2.789195  | -0.356148      | 0.888091  |
| 13     | 1      | 0      | 2.787108  | -0.360145      | -0.888735 |
| 14     | 1      | 0      | -2.023566 | 1.843214       | 0.885157  |
| 15     | 1      | 0      | -0.531632 | 2.203613       | -0.006165 |
| 16     | 1      | 0      | -2.034351 | 1.838944       | -0.877328 |

-----

Mulliken charges and spin densities:

|   |   | 1         | 2         |
|---|---|-----------|-----------|
| 1 | С | 0.117281  | 0.832845  |
| 2 | С | -0.517721 | -0.066666 |

| 3      | С  | 0.579403         | -0.062696 |         |
|--------|----|------------------|-----------|---------|
| 4      | С  | -0.514580        | -0.066951 |         |
| 5      | 0  | -0.500466        | 0.180993  |         |
| 6      | 0  | -0.473076        | 0.029020  |         |
| 7      | С  | -0.211695        | -0.003289 |         |
| 8      | Н  | 0.160070         | 0.037231  |         |
| 9      | Н  | 0.195248         | 0.001044  |         |
| 10     | Н  | 0.160070         | 0.037232  |         |
| 11     | Н  | 0.158253         | 0.000024  |         |
| 12     | Н  | 0.166696         | 0.001644  |         |
| 13     | Н  | 0.166696         | 0.001645  |         |
| 14     | Н  | 0.162664         | 0.038314  |         |
| 15     | Н  | 0.188498         | 0.001307  |         |
| 16     | Н  | 0.162659         | 0.038304  |         |
| Sum of | Mu | lliken charges = | 0.00000   | 1.00000 |

## Saccharin methacrylamide



Sum of electronic and thermal Energies: -1178.140626 (Hartree/Particle)

-----

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 6      | 0      | -2.303719               | -1.976162 | -0.246871 |
| 2      | 6      | 0      | -3.650958               | -1.655745 | -0.075587 |
| 3      | 6      | 0      | -4.048858               | -0.334562 | 0.169120  |
| 4      | 6      | 0      | -3.109597               | 0.698549  | 0.244352  |
| 5      | 6      | 0      | -1.774625               | 0.356096  | 0.074848  |
| 6      | 6      | 0      | -1.363322               | -0.950575 | -0.165802 |
| 7      | 16     | 0      | -0.388099               | 1.482405  | 0.061665  |
| 8      | 7      | 0      | 0.743431                | 0.112570  | -0.076696 |
| 9      | 6      | 0      | 0.107312                | -1.124219 | -0.304912 |
| 10     | 8      | 0      | 0.671323                | -2.167164 | -0.568152 |
| 11     | 8      | 0      | -0.190367               | 2.108881  | 1.363061  |
| 12     | 8      | 0      | -0.415816               | 2.268692  | -1.164424 |
| 13     | 6      | 0      | 2.135627                | 0.434995  | -0.146883 |
| 14     | 8      | 0      | 2.442171                | 1.584107  | -0.387717 |
| 15     | 6      | 0      | 3.135095                | -0.642824 | 0.144982  |
| 16     | 6      | 0      | 2.954919                | -1.524009 | 1.357072  |
| 17     | 6      | 0      | 4.210863                | -0.681048 | -0.649949 |
| 18     | 1      | 0      | -1.974318               | -2.992666 | -0.436002 |
| 19     | 1      | 0      | -4.401458               | -2.438466 | -0.131746 |
| 20     | 1      | 0      | -5.102479               | -0.106331 | 0.299833  |
| 21     | 1      | 0      | -3.412439               | 1.724230  | 0.427973  |
| 22     | 1      | 0      | 2.759974                | -0.922033 | 2.253306  |
| 23     | 1      | 0      | 2.126413                | -2.225646 | 1.232358  |
| 24     | 1      | 0      | 3.866771                | -2.102515 | 1.531815  |
| 25     | 1      | 0      | 5.007656                | -1.400419 | -0.482537 |
| 26     | 1      | 0      | 4.320530                | -0.001747 | -1.489134 |

## N,N-dimethyl methacrylamide



Sum of electronic and thermal Energies: -365.050270 (Hartree/Particle)

|        |        |        |           | -              |           |
|--------|--------|--------|-----------|----------------|-----------|
| Center | Atomic | Atomic | Coord     | dinates (Angst | roms)     |
| Number | Number | Туре   | Х         | Y              | Z         |
|        | 6      | 0      | 1.317804  | 0.187797       | -0.099142 |
| 2      | 6      | 0      | -0.004368 | -0.544369      | -0.126301 |
| 3      | 6      | 0      | 2.391363  | -0.487474      | 0.714708  |
| 4      | 6      | 0      | 1.545508  | 1.249965       | -0.880362 |
| 5      | 1      | 0      | 2.139352  | -0.487172      | 1.783463  |
| 6      | 1      | 0      | 2.480875  | -1.535037      | 0.410174  |
| 7      | 1      | 0      | 3.357599  | 0.009777       | 0.588524  |
| 8      | 1      | 0      | 0.766657  | 1.691924       | -1.495703 |
| 9      | 1      | 0      | 2.534163  | 1.697264       | -0.952150 |
| 10     | 7      | 0      | -1.174048 | 0.164716       | 0.024749  |
| 11     | 8      | 0      | 0.002142  | -1.758529      | -0.325909 |
| 12     | 6      | 0      | -1.287089 | 1.504429       | 0.581297  |
| 13     | 6      | 0      | -2.434884 | -0.549538      | -0.124528 |
| 14     | 1      | 0      | -3.126742 | 0.045158       | -0.733428 |
| 15     | 1      | 0      | -2.241109 | -1.506006      | -0.607463 |

| 16   | 1 | 0 | -2.904170 | -0.731922 | 0.852715  |
|------|---|---|-----------|-----------|-----------|
| 17   | 1 | 0 | -1.893054 | 1.478070  | 1.497935  |
| 18   | 1 | 0 | -0.303961 | 1.903282  | 0.823290  |
| 19   | 1 | 0 | -1.778417 | 2.185017  | -0.127365 |
| <br> |   |   |           |           |           |

## Styrene



Sum of electronic and thermal Energies: -309.507775 (Hartree/Particle)

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ         |  |
|        |        |        |                         |           |           |  |
| 1      | 6      | 0      | -0.008885               | 1.092559  | -0.000145 |  |
| 2      | 6      | 0      | 1.362256                | 1.329576  | -0.000070 |  |
| 3      | 6      | 0      | 2.265327                | 0.261769  | 0.000064  |  |
| 4      | 6      | 0      | 1.780871                | -1.046246 | 0.000136  |  |
| 5      | 6      | 0      | 0.406446                | -1.281306 | 0.000037  |  |
| 6      | 6      | 0      | -0.515191               | -0.220383 | -0.000090 |  |
| 7      | 6      | 0      | -1.954781               | -0.529364 | -0.000222 |  |
| 8      | 6      | 0      | -2.977340               | 0.334929  | 0.000271  |  |
| 9      | 1      | 0      | -0.693975               | 1.935443  | -0.000211 |  |

| 10 | 1 | 0 | 1.730505  | 2.352271  | -0.000143 |
|----|---|---|-----------|-----------|-----------|
| 11 | 1 | 0 | 3.335444  | 0.450486  | 0.000060  |
| 12 | 1 | 0 | 2.472014  | -1.885048 | 0.000296  |
| 13 | 1 | 0 | 0.034973  | -2.303736 | 0.000067  |
| 14 | 1 | 0 | -2.186267 | -1.594744 | -0.000856 |
| 15 | 1 | 0 | -4.004483 | -0.016890 | 0.000020  |
| 16 | 1 | 0 | -2.840425 | 1.413013  | 0.000880  |
|    |   |   |           |           |           |

## Methyl methacrylate



Sum of electronic and thermal Energies: -345.654568 (Hartree/Particle)

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ         |  |
|        |        |        |                         |           |           |  |
| 1      | 6      | 0      | 1.144799                | 0.259798  | -0.000042 |  |
| 2      | 6      | 0      | 1.362187                | 1.581019  | 0.000029  |  |
| 3      | 6      | 0      | -0.241203               | -0.299429 | -0.000261 |  |
| 4      | 6      | 0      | 2.240533                | -0.773507 | 0.000077  |  |
| 5      | 8      | 0      | -0.483471               | -1.491386 | -0.000054 |  |
| 6      | 8      | 0      | -1.207219               | 0.648604  | -0.000029 |  |

| 7  | 6 | 0 | -2.552174 | 0.149353  | 0.000144  |
|----|---|---|-----------|-----------|-----------|
| 8  | 1 | 0 | 2.372329  | 1.982057  | 0.000166  |
| 9  | 1 | 0 | 0.544541  | 2.292740  | -0.000059 |
| 10 | 1 | 0 | 3.225323  | -0.297851 | 0.000233  |
| 11 | 1 | 0 | 2.162626  | -1.425966 | 0.877040  |
| 12 | 1 | 0 | 2.162872  | -1.425904 | -0.876954 |
| 13 | 1 | 0 | -3.191815 | 1.032704  | 0.000491  |
| 14 | 1 | 0 | -2.737793 | -0.459240 | -0.889154 |
| 15 | 1 | 0 | -2.737414 | -0.459679 | 0.889223  |
|    |   |   |           |           |           |

## H<sub>2</sub> adduct of Saccharin methacrylamide



Sum of electronic and thermal Energies: -1179.348985 (Hartree/Particle)

\_\_\_\_\_

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
|        |        |        |                         |           |           |
| 1      | 6      | 0      | -2.238591               | -2.050231 | -0.000023 |
| 2      | 6      | 0      | -3.605213               | -1.770884 | 0.000012  |
| 3      | 6      | 0      | -4.067146               | -0.447506 | 0.000028  |
| 4      | 6      | 0      | -3.173245               | 0.627119  | 0.000019  |
| 5      | 6      | 0      | -1.817495               | 0.324987  | 0.000000  |
| 6      | 6      | 0      | -1.343591               | -0.980848 | -0.000022 |
| 7      | 16     | 0      | -0.477067               | 1.501567  | 0.000010  |
| 8      | 7      | 0      | 0.725542                | 0.164220  | -0.000104 |
| 9      | 6      | 0      | 0.137404                | -1.114255 | -0.000085 |
| 10     | 8      | 0      | 0.727792                | -2.177666 | -0.000195 |
| 11     | 8      | 0      | -0.432073               | 2.206746  | 1.274331  |
| 12     | 8      | 0      | -0.432158               | 2.206905  | -1.274223 |
| 13     | 6      | 0      | 2.085990                | 0.611769  | -0.000015 |
| 14     | 8      | 0      | 2.249116                | 1.814762  | -0.000055 |
| 15     | 6      | 0      | 3.267921                | -0.355051 | 0.000115  |
| 16     | 6      | 0      | 3.369063                | -1.193831 | 1.288149  |
| 17     | 1      | 0      | 4.105419                | 0.350800  | 0.000249  |
| 18     | 1      | 0      | -1.859517               | -3.066915 | -0.000043 |
| 19     | 1      | 0      | -4.321267               | -2.587178 | 0.000026  |
| 20     | 1      | 0      | -5.135262               | -0.251425 | 0.000046  |
| 21     | 1      | 0      | -3.524512               | 1.653767  | 0.000024  |
| 22     | 1      | 0      | 3.327536                | -0.555793 | 2.178035  |
| 23     | 1      | 0      | 2.578833                | -1.943602 | 1.348636  |
| 24     | 1      | 0      | 4.333720                | -1.713532 | 1.295877  |
| 25     | 6      | 0      | 3.369358                | -1.193670 | -1.288009 |
| 26     | 1      | 0      | 2.579118                | -1.943408 | -1.348756 |
| 27     | 1      | 0      | 3.328043                | -0.555513 | -2.177820 |
| 28     | 1      | 0      | 4.334011                | -1.713381 | -1.295575 |

\_\_\_\_\_

## H<sub>2</sub> adduct of *N*,*N*-dimethyl methacrylamide



Sum of electronic and thermal Energies: -366.257758 (Hartree/Particle)

### Standard orientation:

| Center | Atomic | Atomic | Coord     | linates (Angstroms) |           |  |
|--------|--------|--------|-----------|---------------------|-----------|--|
| Number | Number | Туре   | Х         | Y                   | Ζ         |  |
|        | 6      | 0      | -1.227168 | 0.341862            | -0.274824 |  |
| 2      | 6      | 0      | 0.030227  | -0.493011           | 0.023736  |  |
| 3      | 6      | 0      | -2.362624 | -0.582364           | -0.732629 |  |
| 4      | 6      | 0      | -1.630283 | 1.131254            | 0.987605  |  |
| 5      | 1      | 0      | -2.094711 | -1.115742           | -1.650659 |  |
| 6      | 1      | 0      | -2.578917 | -1.331710           | 0.032757  |  |
| 7      | 1      | 0      | -3.269328 | 0.002062            | -0.926844 |  |
| 8      | 7      | 0      | 1.268629  | 0.098761            | -0.111884 |  |
| 9      | 8      | 0      | -0.080691 | -1.657326           | 0.400845  |  |
| 10     | 6      | 0      | 1.535881  | 1.476415            | -0.486039 |  |
| 11     | 6      | 0      | 2.456512  | -0.688879           | 0.187911  |  |
| 12     | 1      | 0      | 3.001180  | -0.260281           | 1.040511  |  |
| 13     | 1      | 0      | 2.145162  | -1.703700           | 0.429514  |  |

42

| 14 | 1 | 0 | 3.131830  | -0.703773 | -0.677948 |
|----|---|---|-----------|-----------|-----------|
| 15 | 1 | 0 | 2.128959  | 1.519628  | -1.410626 |
| 16 | 1 | 0 | 0.617291  | 2.037839  | -0.642066 |
| 17 | 1 | 0 | 2.111377  | 1.980377  | 0.303225  |
| 18 | 1 | 0 | -2.545634 | 1.705240  | 0.804253  |
| 19 | 1 | 0 | -1.821515 | 0.441134  | 1.816820  |
| 20 | 1 | 0 | -0.850284 | 1.831676  | 1.307219  |
| 21 | 1 | 0 | -1.025550 | 1.052870  | -1.084294 |
|    |   |   |           |           |           |

# H<sub>2</sub> adduct of styrene



Sum of electronic and thermal Energies: -310.713752 (Hartree/Particle)

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Z         |  |
|        |        |        |                         |           |           |  |
| 1      | 6      | 0      | 0.016320                | 1.042742  | 0.000030  |  |
| 2      | 6      | 0      | 1.377279                | 1.364152  | 0.000012  |  |
| 3      | 6      | 0      | 2.339025                | 0.355982  | -0.000015 |  |
| 4      | 6      | 0      | 1.929423                | -0.980373 | -0.000025 |  |
| 5      | 6      | 0      | 0.572538                | -1.294756 | -0.00008  |  |
| 6      | 6      | 0      | -0.408955               | -0.290460 | 0.000021  |  |

| 7  | 6 | 0 | -1.875955 | -0.693220 | 0.000055  |
|----|---|---|-----------|-----------|-----------|
| 8  | 6 | 0 | -2.896146 | 0.448023  | -0.000061 |
| 9  | 1 | 0 | -0.714691 | 1.845507  | 0.000051  |
| 10 | 1 | 0 | 1.681632  | 2.407878  | 0.000018  |
| 11 | 1 | 0 | 3.396780  | 0.605470  | -0.000030 |
| 12 | 1 | 0 | 2.668720  | -1.777490 | -0.000048 |
| 13 | 1 | 0 | 0.263250  | -2.338544 | -0.000017 |
| 14 | 1 | 0 | -3.914722 | 0.045526  | -0.000053 |
| 15 | 1 | 0 | -2.790909 | 1.084812  | 0.885730  |
| 16 | 1 | 0 | -2.790863 | 1.084671  | -0.885948 |
| 17 | 1 | 0 | -2.060176 | -1.335269 | -0.873186 |
| 18 | 1 | 0 | -2.060186 | -1.335096 | 0.873423  |
|    |   |   |           |           |           |

## H<sub>2</sub> adduct of methyl methacrylate

\_\_\_\_\_



\_\_\_\_\_

Sum of electronic and thermal Energies: -346.860557 (Hartree/Particle) Standard orientation:

\_\_\_\_\_

Center Atomic Atomic Coordinates (Angstroms)

\_\_\_\_\_

| Number | Number | Туре | Х         | Y         | Z         |
|--------|--------|------|-----------|-----------|-----------|
| 1      | 6      | 0    | 1.076737  | 0.219513  | -0.396283 |
| 2      | 6      | 0    | 1.449452  | 1.427272  | 0.489032  |
| 3      | 6      | 0    | -0.298574 | -0.296624 | 0.005122  |
| 4      | 6      | 0    | 2.120159  | -0.898057 | -0.313126 |
| 5      | 8      | 0    | -0.519783 | -1.298881 | 0.650403  |
| 6      | 8      | 0    | -1.276196 | 0.534207  | -0.431006 |
| 7      | 6      | 0    | -2.612500 | 0.159594  | -0.061093 |
| 8      | 1      | 0    | 3.104632  | -0.519654 | -0.609336 |
| 9      | 1      | 0    | 2.188907  | -1.287732 | 0.707094  |
| 10     | 1      | 0    | 1.861911  | -1.735401 | -0.969290 |
| 11     | 1      | 0    | -3.260914 | 0.925863  | -0.487427 |
| 12     | 1      | 0    | -2.862515 | -0.824371 | -0.467040 |
| 13     | 1      | 0    | -2.717675 | 0.129213  | 1.026894  |
| 14     | 1      | 0    | 2.422980  | 1.828575  | 0.187083  |
| 15     | 1      | 0    | 0.706483  | 2.225948  | 0.404255  |
| 16     | 1      | 0    | 1.519007  | 1.129499  | 1.541839  |
| 17     | 1      | 0    | 0.993375  | 0.575266  | -1.431155 |
|        |        |      |           |           |           |

### H radical



\_\_\_\_\_

Sum of electronic and thermal Energies: -0.498857 (Hartree/Particle)

### Standard orientation:

\_\_\_\_\_

| Center | Atomic | Atomic | Coordinates (Angstroms) |          | oms)     |
|--------|--------|--------|-------------------------|----------|----------|
| Number | Number | Туре   | Х                       | Y        | Z        |
| 1      | 1      | 0      | 0.000000                | 0.000000 | 0.000000 |
|        |        |        |                         |          |          |

#### References

- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**
- [2] T. Kelen, F. Tüdős, B. Turcsányi, Polymer Bull. 1980, 2, 71-76.