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SECTION A. Experimental Section

1. Materials

Unless stated otherwise, commercially available reagents were purchased from Sigma-
Aldrich, Acros Organic, Alfa Aesar, TCI, Energy chemical, Adams and Sinopharm
Chem. Dry tetrahydrofuran (THF), dichloromethane (DCM), toluene and N, N-
dimethylformamide (DMF) were collected fresh from an Innovative Technology PS-
MD-5 solvent purification system. All other dry solvents used were dried over 4 A

molecular sieves and stored under argon.
2. Analysis Techniques

Nuclear magnetic resonance (NMR). All 'H NMR, 3C NMR spectra were collected
using a Bruker nuclear magnetic resonance instrument (300 MHz) using
tetramethylsilane (TMS) as the internal standard at room temperature. The 'H NMR
spectra were referenced to 7.26 ppm in CDCls, and 3C NMR spectra were referenced

to 77.00 ppm in CDCl;.

Size exclusion chromatography (SEC). The number-average molecular weight (M,,)
and polydispersity (P = M,,/M,) of the polymers were determined using a size exclusion
column TOSOH HLC-8320 equipped with refractive index and UV detectors using two
TSKgel Super Multipore HZ-N (4.6 x 150 mm, 3 um beads size) columns arranged in
series. THF was used as the eluent at a flow rate of 0.35 mL/min at 40 °C. Data
acquisition was performed using EcoSEC software, and molecular weights were

calculated with polystyrene (PS) standards.

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF).
MALDI-TOF mass spectroscopy (MS) were acquired on an UltrafleXtreme III
MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) equipped with an
Nd:YAG smart beam-II laser with 355-nm wavelength and 200 Hz firing rate. The



MALDI sample spots were prepared onto the MTP 384 target plate. The compound
trans-2-[3-(4-tert-butyl-phenyl)-2-methyl- 2-propenylidene]-malononitrile (DCTB,
Aldrich, >98%) served as the matrix and was prepared in CHCIl; at a concentration of
20 mg/mL. The cationizing agent sodium trifluoroacetate was prepared in ethanol at a
concentration of 10 mg/mL. The matrix and cationizing salt solutions were mixed in a
ratio of 10/1 (v/v). The instrument was calibrated prior to each measurement with
external PMMA at the molecular weight under consideration. All samples were
dissolved in CHCIl; at a concentration of 10 mg/mL. After sample preparation and
solvent evaporation, the target plate was inserted into the MALDI-TOF mass
spectrometer. For high resolution mass analysis the instrument was operated in the

reflector mode.

MALDI-TOF MS/MS. Tandem MALDI-TOF MS analysis was recorded by using the
laser induced dissociation (LID)-LIFT mode on the same instrument controlled by the
Flexcontrol 1.4 software package. For MS/MS, ions generated by the MALDI process
were accelerated at 7.50 kV through a grid at 6.85 kV. Fragmentation was performed
in the simple metastable decomposition mode, and the fragments have the same velocity
with the precursors. The precursors and fragments then passed into a precursor ion
selector (PCIS). In this region, a parent ion is able to be picked with the associated
fragments out of a mixture, and the selected ions travel side by side into the LIFT cell.
The fragments were further accelerated by 19 kV in the LIFT cell to reduce the
difference of kinetic energy, and then passed through a post lift metastable suppressor
(PLMS) to filter the residual metastable parent ions. The fragments with similar kinetic
energy then passed into the reflector, and finally to the detector. MS and MS/MS data

were further processed using FlexAnalysis 1.3 software package.

Recycling Preparative Size exclusion chromatography (prep-SEC). Prep-SEC
separation using a LC-9260 NEXT recycling preparative HPLC system (Japan
Analytical Industry) equipped with two tandem 20® (i.d. 20 mm x 600 mmL) columns,

an IR detector and a 254 nm UV detector. THF was used as an eluent with a flow rate



of 6 mL/min. The samples were dissolved in THF at a concentration of 100 mg/mL,
and the maximum capacity of the column is 300 mg. Before injection, the solution was
filtered through a 0.2 um pore PTFE syringe filter The SEC was performed under a

cycling mode until the coinciding peaks were separated.



3. Monomer design and synthesis

3.1 Synthetic route of monomer 1
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Scheme S1. Synthesis of monomer 1.

M-1:l1 To a 1.0 L three-neck round-bottom flask equipped with a condenser were
added with maleimide (30.0 g, 0.31 mol) and 500 mL of CCl,. The mixture was stirred
at room temperature under argon atmosphere. Bromine (18.0 mL, 0.35 mol) was added
subsequently and then the mixture was refluxed at 78 °C for about 1 h. Crude products
were crystallized and filtered after cooling to room temperature. The filter cake was
washed with 2x100 mL petrol ether (PE) and dried under vacuum at 25 °C overnight to
afford crude M-1 (73.1 g, yield 92.1%) as a yellow crystal without any further
purification.

M-2:11 M-1 (73.0 g, 0.28 mol) was dissolved to anhydrous THF (700 mL) ina 1.0 L
three-neck round-bottom flask equipped with a 250.0 mL slow-addition apparatus and
cooled to 0 °C under argon atmosphere. Triethylamine (TEA, 43.4 mL, 0.31 mol) was
dissolved in anhydrous THF (200 mL) and dropped in the stirred reaction system slowly
at 0 °C and maintained for 15 minutes more. After that, the mixture was moved to room
temperature and stirred for about 2 h. The insoluble substance was filtered and the filter
cake was washed with 3x200 mL ethyl acetate (EA) and the combined filtrate was
concentrated. The residue was redissolved in 500 mL EA and then washed with 3x250
mL brine. The organic phase was dried with anhydrous Na,SO, and the solvent was
evaporated, and the crystal was dried under vacuum to afford M-2 (41.8 g, yield 83.6%)
as a yellow powder. 'H NMR (300 MHz, CDCls, ppm): 8 7.51 (s, 1H), 6.89 (s, 1H). 3C
NMR (75 MHz, CDCls, ppm): 6 167.88, 164.85, 132.85, 132.18.

M-3: To a 350 mL thick-wall pressure flask were added with M-2 (12.0 g, 68.2 mmol),



furan (46.4 g, 0.68 mol) and anhydrous diethyl ether (18.0 mL). The flask was sealed
and the mixture was stirred at 78 °C for 4 days. After cooling to room temperature, the
mixture was filtered. The filter cake was washed with 3x50 mL PE and the products
were dried under vacuum at 25 °C overnight to afford M-3 (14.2 g, yield 85.3%) as a
light gray powder. '"H NMR (300 MHz, CDCl;, ppm): 6 8.00 (s, 1H), 6.82 — 6.57 (m,
2H), 5.31 (d, J=5.9 Hz, 2H), 2.88 (s, 1H). *C NMR (75 MHz, CDCl;, ppm): 3 172.88,
136.56, 136.51, 83.18, 82.63, 56.92, 55.92.

S-1:[2] 6-bromo-1-hexaneol (26.0 g, 0.14 mol) was dissolved in 500 mL of DMF in a
1.0 L round-bottom flask. Then potassium thioacetate (32.8 g, 0.29 mol) was added and
the mixture was stirred at room temperature overnight. The reaction mixture was diluted
by 500 mL EA and washed with 3x500 mL saturated NH4Cl (aq.) to remove DMF. The
upper phase was collected and dried with anhydrous Na,SO,4. The solvent was
evaporated to afford S-1 (25.0 g, yield 98.8%) as a colorless oil. 'H NMR (300 MHz,
CDCl;, ppm): 6 3.64 (t, J = 8.7 Hz, 2H), 2.86 (d, J = 9.8 Hz, 2H), 2.32 (s, 3H), 1.67 —
1.53 (m, 4H), 1.39 (dd, J = 9.7, 4.8 Hz, 4H). 3C NMR (75 MHz, CDCl;, ppm): &
196.18, 62.66, 32.48, 30.61, 29.43, 28.98, 28.48, 25.21.

Monomer (1):B! To a 1.0 L three-neck round-bottom flask were added with S-1 (25.0
g, 0.14 mol), triphenylphosphine (55.8 g, 0.21 mol) and 800 mL anhydrous THF. Then
M-3 (45.0 g, 0.18 mol) was added subsequently to the stirred system at -10 °C.
Diisopropyl azodiformate (DIAD, 43.0 g, 0.21 mol) was then added dropwise to the
mixture slowly at -10 °C under argon atmosphere. The mixture was stirred at room
temperature for another 2 h and the solvent was then evaporated. The residue was then
purified by silica gel column chromatography eluting with PE/EA (v/v=6/1 to 3/1) and
recrystallized to afford monomer 1 (40.8 g, yield 71.5%) as a white solid. "TH NMR (300
MHz, CDCls, ppm): 6 6.65 (s, 2H), 5.38 — 5.18 (m, 2H), 3.53 (t, /= 9.7 Hz, 2H), 2.92
—2.77 (m, 2H), 2.32 (s, 3H), 1.56 (dt, J=19.6, 8.9 Hz, 4H), 1.33 (s, 4H). 3C NMR (75
MHz, CDCls, ppm): & 195.90, 173.29, 173.21, 136.53, 136.49, 83.09, 82.52, 55.73,
55.22,39.58, 30.64, 29.26, 28.90, 28.12, 27.15, 25.96.



3.2 Orthogonal deprotection of monomer 1 and characterization of 2 and 3[4
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Scheme S2. Orthogonal deprotection and thiol-maleimide coupling of deprotected 1.
1-MA: Monomer 1 (19.4 g, 48.2 mmol) was dissolved in 300 mL of toluene in a 500
mL round-bottom flask. The mixture was stirred at 110 °C for about 8 h. TLC showed
the reaction was complete. Toluene was evaporated under vacuum after the mixture
was cooled to room temperature to afford the product 1-MA (16.0 g, yield 99.3%) as a
dark yellow solid. '"H NMR (300 MHz, CDCls, ppm): & 6.87 (s, 1H), 3.55 (t,J=7.2
Hz, 2H), 2.85 (t,J=7.2 Hz, 2H), 2.32 (s, 3H), 1.68 — 1.47 (m, 4H), 1.34 (ddd, J=22.7,
12.2, 6.2 Hz, 4H).
1-SH: Monomer 1 (23.3 g, 57.9 mmol) was dissolved in 700 mL methanol (MeOH) in
a 1.0 L three-neck round-bottom flask equipped with a condenser under argon
atmosphere. The mixture was heated to 55 °C and then concentrated hydrochloric acid
(34.5 mL, 0.41 mol) was added subsequently to the reaction system. The mixture was
stirred and refluxed at 55 °C for about 6 h and monitored by TLC. After cooling to room
temperature, the reaction was quenched with 500 mL water and extracted with
dichloromethane (DCM, 2x300 mL). The organic layer was collected and washed with
300 mL water and then dried with anhydrous Na,SO,4. The solvent was evaporated
under vacuum to afford 1-SH (20.7 g, yield 99.6%) as a yellow oil. 'H NMR (300 MHz,
CDCl;, ppm): 6 6.65 (s, 2H), 5.26 (d, J= 2.8 Hz, 2H), 3.54 (t, /= 7.2 Hz, 2H), 2.85 (s,
1H), 2.50 (dd, J= 14.7, 7.4 Hz, 2H), 1.70 — 1.52 (m, 4H), 1.50 — 1.22 (m, 4H).

Thiol-bromomaleimide Michael coupling:
1-MA (160 mg, 0.48 mmol) was dissolved in 5.0 mL CHCI;, TEA (0.2 mL, 1.4 mmol)
was added subsequently at 25 °C. 1-SH (173 mg, 0.48 mmol) was dissolved in 5.0 mL



CHCI; and added dropwise to the stirred solution under argon atmosphere. The mixture
was washed successively with saturated NaHCOj; (10.0 mL), water (10.0 mL) and brine
(10.0 mL). The organic layer was dried with anhydrous Na,SO, and concentrated under
vacuum. The crude product was purified by silica gel flash column eluting with PE/EA
(v/v=175/1t0 5/2) to afford 2 (250 mg, yield 85.1%) as a yellow oil. 'H NMR (300 MHz,
CDCl;, ppm): 8 6.66 (s, 2H), 6.02 (s, 1H), 5.37 — 5.09 (m, 2H), 3.52 (dt, J= 19.1, 7.2
Hz, 4H), 2.86 (dt, J=11.2, 7.3 Hz, 5H), 2.32 (s, 3H), 1.83 — 1.14 (m, 16H). 13*C NMR
(75 MHz, CDCl;, ppm): & 195.94, 173.34, 173.24, 169.74, 168.00, 151.30, 136.54,
136.46, 117.21, 83.11, 82.55, 55.72, 55.18, 39.39, 38.01, 31.50, 30.64, 29.31, 28.98,
28.37,28.22,28.14, 27.44, 27.03, 26.20, 25.77.

1-MA (160 mg, 0.48 mmol) was dissolved in 5.0 mL CHClI;, TEA (0.6 mL, 4.2 mmol)
was added subsequently at 25 °C. 1-SH (505 mg, 1.4 mmol) was dissolved in 10.0 mL
CHCIl; and added to the stirred solution under argon atmosphere. The reaction was
stirred and monitored by TLC, and then washed successively with saturated NaHCO;
(15.0 mL), water (15.0 mL) and brine (15.0 mL). The organic layer was dried with
anhydrous Na,SO, and concentrated under vacuum. The crude product was purified by
silica gel flash column eluting with PE/EA (v/v = 6/1 to 3/1) to afford 3 (330 mg,
70.8%) as a yellow oil. "TH NMR (300 MHz, CDCls, ppm): 8 6.65 (s, 4H), 5.26 (d, J =
2.3 Hz, 4H), 3.52 (m, 6H), 3.42 (s, 2H), 2.73 (dt, J = 12.5, 7.4 Hz, 8H), 2.32 (s, 3H),
1.61 (m, 12H), 1.35 (m, 12H).



4. Kinetics experiment of cascade thiol-maleimide Michael couplings (CTMMC)
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Scheme S3. CTMMC using deprotected monomer 1.
The feed ratio of thiols and bromomaleimides was considered to influence the content
of the products in CTMMC. '"H NMR of 1-MA in CDCl; was recorded and taken as the
zero point. A solution of 1-MA (56.0 mg, 0.17 mmol) in CDCl; (500 pL) was aliquoted
as 50 puL in each NMR tube. A mixture of 1-SH (from 0.5 to 2.2 equivalent of 1-MA,
sampled from the predetermined solution of 74.9 mg 1-SH dissolved in 1000 pL
CDCIl;) and TEA (3.0 equivalent of 1-SH) was respectively added to the same solution.
Each solution was diluted to 500 pL with CDCI; for appropriate testing concentration
(about 5 - 20 mg/mL solution in CDCl; for 'H NMR) and mixed quickly. The content
of each product at different starting ratio was recorded after 1 hour. With the acetyl
proton signal b at 2.32 ppm as interior label, the instant content of 2 was monitored by
the thiomaleimide proton signal e at 6.01 ppm. The instant content of 3 after a whole
cascade process was calculated from the ratio of 2 and the remaining 1-MA (monitored

by the bromomaleimide proton signal a at 6.89 ppm).
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Figure S1. 'H NMR spectra of CTMMC in 1 hour at different feeding ratios.
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'H NMR of 1-MA in CDCI; was recorded and taken as the zero-time point. A solution
of 1-MA (14.0 mg, 0.041 mmol) in CDCI; (500 pL) was aliquoted as 250 pL in each
NMR tube. A mixture of 1-SH (9.1 mg, 0.025 mmol, 1.2 equivalent of 1-MA for highest
yield of 2 and 16.6 mg, 0.046 mmol, 2.2 equivalent of 1-MA for excessive 1-SH) and
TEA (3.0 equivalent of 1-SH) in 250 uL. CDCl; was respectively added to the same
solution and mixed quickly. The recording of the first 'TH NMR spectrum was complete
within one minute. The progress of cascade Michael additions was monitored by the
integral changes of bromomaleimide proton signal a in 6.89 ppm and thiomaleimide

proton signal e in 6.01 ppm.
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Figure S3. 'H NMR spectra of cascade Michael couplings at a feed ratio of 1-SH/1-
MA=1.2:1.



5. Synthetic protocols

5.1 Synthesis of dimers via CTMMC-integrated IEG

5.1.1 Synthetic route of dimer A
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Scheme S4. Synthetic route of A via CTMMC-integrated IEG.

A: 1-MA and 1-SH precursors to A were prepared using the procedures described in
section

1-MA (16.0 g, 47.9 mmol) was dissolved in 160 mL CHCI; in a 500 mL three-neck
round-bottom flask equipped with a 250 mL slow-addition apparatus. TEA (24.0 mL,
0.17 mol) was added subsequently at 25 °C. After that, a solution of 1-SH (20.7 g, 57.6
mmol) in 180 mL CHCI; was added dropwise to the stirred mixture under argon
atmosphere (TLC indicated the 1% coupling was completed). A mixture of TEA (31.4
mL, 225.9 mmol) and hexyl mercaptan (Side Chain A, 10.6 mL, 75.2 mmol) dissolved
in 20.0 mL CHCI; was then added. The mixture was stirred at 25°C for 12 h and
quenched with 300 mL saturated NaHCOj; (aq.). The organic layer was washed with
water (300 mL) and brine (300 mL), then dried with anhydrous Na,SO, and
concentrated under vacuum. The crude product was purified by flash column on silica
gel eluting with PE/EA (v/v = 6/1 to 4/1) to give A (26.3 g, overall yield 75.2% of
CTMMC) as a yellow oil. 'H NMR (300 MHz, CDCls, ppm): 8 6.65 (s, 2H), 5.27 (d, J
=2.3 Hz, 2H), 3.60 — 3.44 (m, 4H), 3.43 (s, 2H), 2.93 — 2.66 (m, 7H), 2.32 (s, 3H), 1.73
—1.23 (m, 24H), 0.89 (t, J= 6.8 Hz, 3H). 3C NMR (75 MHz, CDCls, ppm): & 195.87,
174.66, 174.63, 173.29, 173.21, 136.53, 136.48, 83.10, 82.53, 55.73, 55.22, 46.77,
46.73, 39.53, 39.05, 32.17, 31.97, 31.29, 30.64, 29.29, 28.97, 28.92, 28.74, 28.40,
28.17, 28.06, 27.25, 27.14, 26.07, 25.95, 22.49, 14.02.



Intermediate 2 was also rigorous characterized by sampling (~ 20 mg) before adding
hexyl mercaptan, which was purified by flash column on silica gel eluting with PE/EA
(v/v=15/11t05/2): '"HNMR (300 MHz, CDCls, ppm): 8 6.66 (s, 2H), 6.02 (s, 1H), 5.37
—5.09 (m, 2H), 3.52 (dt, J= 19.1, 7.2 Hz, 4H), 2.86 (dt, J=11.2, 7.3 Hz, 5H), 2.32 (s,
3H), 1.83 — 1.14 (m, 16H). '*C NMR (75 MHz, CDCl;, ppm): 6 195.94, 173.34, 173.24,
169.74, 168.00, 151.30, 136.54, 136.46, 117.21, 83.11, 82.55, 55.72, 55.18, 39.39,
38.01, 31.50, 30.64, 29.31, 28.98, 28.37, 28.22, 28.14, 27.44, 27.03, 26.20, 25.77.



5.1.2 Synthetic route of dimer B
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Scheme S5. Synthetic route of B via CTMMC-integrated IEG.

B: 1-MA and 1-SH precursors to B were prepared using the procedures described in
section 3.2.

1-MA (2.8 g, 8.3 mmol) was dissolved in 28 mL CHClI; in a 100 mL three-neck round-
bottom flask equipped with a 50 mL slow-addition apparatus. TEA (4.2 mL, 30.0
mmol) was added subsequently at 25 °C. After that, a solution of 1-SH (3.6 g, 10.0
mmol) in 36 mL CHCI; was added dropwise to the stirred mixture under argon
atmosphere (TLC indicated the 1% coupling was completed). A mixture of TEA (6.8
mL, 48.9 mmol) and benzyl mercaptan (Side Chain B, 1.9 mL, 16.3 mmol) dissolved
in 5.0 mL CHCI; was then added. The mixture was stirred at 25°C for 12 h and quenched
with 80 mL saturated NaHCOj (aq.). The organic layer was washed with water (80 mL)
and brine (80 mL), then dried with anhydrous Na,SO, and concentrated under vacuum.
The crude product was purified by flash column on silica gel eluting with PE/EA (v/v
=6/1to 4/1) to give B (4.9 g, overall yield 80.2% of CTMMC) as a yellow oil. "H NMR
(300 MHz, CDCls, ppm): 6 7.34 (m, SH), 6.65 (s, 2H), 5.26 (d, J = 2.7 Hz, 2H), 4.14
(d,/=13.5Hz, 1H), 3.91 (d, /= 13.5 Hz, 1H), 3.61 — 3.43 (m, 4H), 3.32 (dd, J=21.1,
3.0 Hz, 2H), 2.85 (t,J = 7.2 Hz, 3H), 2.76 — 2.48 (m, 2H), 2.32 (s, 3H), 1.69 — 1.26 (m,
16H). 3C NMR (75 MHz, CDCls, ppm): 6 195.94, 174.81, 174.43, 173.32, 173.23,
136.53, 136.50, 136.43, 129.24, 128.74, 127.69, 83.11, 82.54, 55.76, 55.22, 46.29,
45.41, 39.56, 39.10, 36.33, 29.31, 28.94, 28.68, 28.19, 28.03, 27.26, 27.15, 26.11,
25.94.



5.2 Synthesis of palindromic tetramers via CTMMC-integrated IEG

5.2.1 Synthetic route of palindromic tetramer AAA

Bro o)
Bro o
con. HCI @ TEA CHCly %;N‘/\/\/\ ‘/\/\/‘S’q ;NW A~~~ | AOA
> No~~~ ANASNASH 4
Bro MeOH 8 o

\/\/\/\ M/\SB\ I A-SH
° L — 3= Br, 0O °
A Toluene Eﬁl\/\/\/\ A~~~ Bro
o o
A-MA ~/\/\/\ AN AN A~~~ AAA

o

Scheme S6. Synthetic route of AAA via CTMMC-integrated IEG.

A-MA: A (11.6 g, 15.8 mmol) was dissolved in 300 mL of toluene in a 500 mL round-
bottom flask. The mixture was stirred at 110 °C for about 8 h. TLC showed the reaction
was complete. Toluene was evaporated under vacuum after the mixture was cooled to
room temperature to afford the product A-MA (10.5 g, yield 99.8%) as a yellow oil. 'H
NMR (300 MHz, CDCl;, ppm): 8 6.87 (s, 1H), 3.62 — 3.46 (m, 4H), 3.44 (s, 2H), 2.94
—2.65 (m, 6H), 2.32 (s, 3H), 1.74 — 1.48 (m, 12H), 1.49 — 1.20 (m, 12H), 0.89 (d, J =
6.7 Hz, 3H).

A-SH: A (15.0 g, 20.5 mmol) was dissolved in 20.0 mL. CHCl; and diluted with 250
mL MeOH in a 500 mL three-neck round-bottom flask equipped with a condenser under
argon atmosphere. The mixture was heated to 55 °C and then concentrated hydrochloric
acid (22.2 mL, 0.27 mol) was added dropwise to the reaction system. The mixture was
stirred and refluxed at 55 °C for about 6 h and monitored by TLC. After cooling to room
temperature, the reaction was quenched with 300 mL water and extracted with DCM
(2x150 mL). The organic layer was collected and washed with 300 mL water and then
dried with anhydrous Na,SO,. The solvent was evaporated under vacuum to afford A-
SH (14.4 g, yield 99.7%) as a yellow oil. '"H NMR (300 MHz, CDCls, ppm): 8 6.65 (s,
2H), 5.27 (d, J=2.3 Hz, 2H), 3.53 (dd, /= 14.7, 7.4 Hz, 4H), 3.44 (s, 2H), 2.94 — 2.67
(m, 3H), 2.51 (dd, J=14.6, 7.4 Hz, 1H), 1.79 — 1.16 (m, 24H), 0.89 (t, /= 6.8 Hz, 3H).
AAA: A-MA (3.9 g, 5.9 mmol) was dissolved in 40 mL CHCI; in a 250 mL three-neck
round-bottom flask equipped with a 250 mL slow-addition apparatus. TEA (3.1 mL,
22.5 mmol) was added subsequently at 25 °C. After that, a solution of A-SH (4.9 g, 7.1



mmol) in 60 mL CHCI; was added dropwise to the stirred mixture under argon
atmosphere (TLC indicated the 1% coupling was completed). A mixture of TEA (4.3
mL, 30.6 mmol) and hexyl mercaptan (1.4 mL, 10.2 mmol) dissolved in 10.0 mL CHCl;
was then added. The mixture was stirred at 25°C for 12 h and quenched with 100 mL
saturated NaHCOj; (aq.). The organic layer was washed with water (100 mL) and brine
(100 mL), then dried with anhydrous Na,SO,4 and concentrated under vacuum. The
crude product was purified by flash column on silica gel eluting with PE/EA (v/v = 6/1
to 3/1) to give AAA (4.9 g, overall yield 60.0% of CTMMC) as a yellow oil. MALDI-
TOF MS calculated: [M — Furan + Na] * = 1343.438, found: m/z = 1343.856. '"H NMR
(300 MHz, CDCls, ppm): 6 6.65 (d, J= 0.4 Hz, 2H), 5.29 — 5.24 (m, 2H), 3.52 (dd, J =
16.0, 7.5 Hz, 8H), 3.44 (s, 6H), 2.94 — 2.80 (m, 8H), 2.74 (ddd, J = 16.5, 10.0, 4.0 Hz,
7H), 2.32 (s, 3H), 1.76 — 1.49 (m, 28H), 1.42 — 1.15 (m, 28H), 0.82 (t, /= 6.8 Hz, 9H).
13C NMR (75 MHz, CDCl;, ppm): 6 194.85, 173.63, 172.26, 172.18, 135.50, 135.45,
82.07, 81.50, 54.71, 54.18, 45.71, 38.50, 37.98, 31.17, 31.01, 30.98, 30.26, 29.61,
28.27, 27.95, 27.90, 27.76, 27.71, 27.38, 27.12, 27.03, 26.21, 26.11, 25.08, 25.05,
24.93,21.46, 12.99.

Intermediate AOA was also rigorous characterized by sampling (~ 20 mg) before
adding hexyl mercaptan, which was purified by flash column on silica gel eluting with
PE/EA (v/iv=15/1to 5/2): MALDI-TOF MS calculated: [M — Furan + Na] "= 1225.357,
found: m/z=1225.517. '"H NMR (300 MHz, CDCls, ppm): 4 6.65 (s, 2H), 6.03 (s, 1H),
5.26 (s, 2H), 3.59 — 3.45 (m, 8H), 3.44 (s, 4H), 2.94 — 2.63 (m, 13H), 2.32 (s, 3H), 1.84
—1.15 (m, 48H), 0.89 (t, J = 6.8 Hz, 6H). 13C NMR (75 MHz, CDCl;, ppm): 8 195.90,
174.72, 174.68, 174.66, 173.31, 173.22, 169.72, 168.00, 151.34, 136.54, 136.48,
117.21, 110.00, 83.10, 82.54, 55.74, 55.21, 46.75, 39.53, 39.06, 38.85, 37.98, 32.26,
32.18, 32.06, 32.04, 31.59, 31.29, 30.64, 29.30, 28.98, 28.93, 28.84, 28.74, 28.40,
28.18, 28.05, 27.50, 27.26, 27.14, 26.25, 26.08, 25.95, 22.50, 14.02.



5.2.2 Synthetic route of palindromic tetramer ABA
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Scheme S7. Synthetic route of ABA via CTMMC-integrated IEG.

ABA: A-MA and A-SH precursors to ABA were prepared using the procedures
described in section 5.2.1.

A-MA (5.9 g, 8.9 mmol) was dissolved in 60 mL CHCl; in a 250 mL three-neck round-
bottom flask equipped with a 250 mL slow-addition apparatus. TEA (4.5 mL, 32.1
mmol) was added subsequently at 25 °C. After that, a solution of A-SH (7.4 g, 10.7
mmol) in 75 mL CHCI; was added dropwise to the stirred mixture under argon
atmosphere (TLC indicated the 1% coupling was completed). A mixture of TEA (4.9
mL, 35.4 mmol) and benzyl mercaptan (1.4 mL, 11.8 mmol) dissolved in 10.0 mL
CHCIl; was then added. The mixture was stirred at 25°C for 12 h and quenched with
100 mL saturated NaHCOj (aq.). The organic layer was washed with water (100 mL)
and brine (100 mL), then dried with anhydrous Na,SO, and concentrated under
vacuum. The crude product was purified by flash column on silica gel eluting with
PE/EA (v/v =6/1 to 3/1) to give ABA (6.8 g, overall yield 54.8% of CTMMC) as a
yellow oil. MALDI-TOF MS calculated: [M — Furan + Na] * = 1349.391, found: m/z =
1349.499. 'TH NMR (300 MHz, CDCls, ppm): 8 7.35 (dt, J=18.6, 5.8, 5H), 6.65 (s, 2H),
5.26 (d,J=2.5Hz, 2H), 4.15 (d, J=13.5 Hz, 1H), 3.91 (d, /= 13.5 Hz, 1H), 3.52 (dd,
J=16.0, 8.3 Hz, 8H), 3.44 (s, 2H), 3.33 (dd, J = 21.1, 2.9 Hz, 2H), 2.95 — 2.47 (m,
13H), 2.32 (s, 3H), 1.74 — 1.47 (m, 24H), 1.34 (ddd, J = 18.3, 14.3, 7.8 Hz, 24H), 0.89
(t,J=6.7 Hz, 6H). 3C NMR (75 MHz, CDCls, ppm): 8 195.92, 174.81, 174.68, 174.42,
173.31, 173.23, 136.53, 136.49, 136.42, 129.23, 128.75, 127.70, 83.11, 82.54, 55.75,
55.21, 46.78, 46.30, 45.41, 39.54, 39.06, 36.34, 32.20, 32.03, 31.86, 31.30, 30.64,
29.69, 29.31, 28.99, 28.74, 28.42, 28.18, 28.09, 27.26, 27.15, 26.09, 25.96, 22.50,
14.02.



5.2.3 Synthetic route of palindromic tetramer BAB
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Scheme S8. Synthetic route of BAB via CTMMC-integrated IEG.

B-MA: B (1.1 g, 1.5 mmol) was dissolved in 33.0 mL of toluene in a 50.0 mL round-
bottom flask. The mixture was stirred at 110 °C for about 8 h. TLC showed the reaction
was complete. Toluene was evaporated under vacuum after the mixture was cooled to
room temperature to afford the product B-MA (1.0 g, yield 99.5%) as a yellow oil. 'H
NMR (300 MHz, CDCl;, ppm): 6 7.46 — 7.29 (m, 5H), 6.86 (s, 1H), 4.15 (d, J=13.5
Hz, 1H), 3.91 (d, J = 13.5 Hz, 1H), 3.52 (dt, /= 17.3, 7.1 Hz, 4H), 3.32 (dd, J = 20.8,
2.9 Hz, 2H), 2.85 (t, J = 7.2 Hz, 2H), 2.63 (dtd, J = 20.3, 12.6, 7.4 Hz, 2H), 2.32 (s,
3H), 1.67 — 1.15 (m, 16H).

B-SH: B (1.3 g, 1.8 mmol) was dissolved in 5.0 mL CHClI; and diluted with 40.0 mL
MeOH in a 100 mL three-neck round-bottom flask equipped with a condenser under
argon atmosphere. The mixture was heated to 55 °C and then concentrated hydrochloric
acid (1.9 mL, 23.1 mmol) was added dropwise to the reaction system. The mixture was
stirred and refluxed at 55 °C for about 6 h and monitored by TLC. After cooling to room
temperature, the reaction was quenched with 50.0 mL water and extracted with DCM
(2x50.0 mL). The organic layer was collected and washed with 50.0 mL water and then
dried with anhydrous Na,SO,. The solvent was evaporated under vacuum to afford B-
SH (1.2 g, yield 97.9%) as a yellow oil. 'H NMR (300 MHz, CDCl;, ppm): & 7.45 —
7.28 (m, 5H), 6.65 (s, 2H), 5.26 (d, J=2.7 Hz, 2H), 4.14 (d, /= 13.5 Hz, 1H), 3.91 (d,
J=13.5 Hz, 1H), 3.59 — 3.44 (m, 4H), 3.33 (dd, J = 20.8, 2.9 Hz, 2H), 2.85 (s, 1H),
2.74 —2.44 (m, 4H), 1.70 — 1.17 (m, 16H).

BAB: B-MA (1.0 g, 1.5 mmol) was dissolved in 10 mL CHCI; in a 50 mL three-neck
round-bottom flask equipped with a 25 mL slow-addition apparatus. TEA (0.72 mL,
5.2 mmol) was added subsequently at 25 °C. After that, a solution of B-SH (1.2 g, 1.7

mmol) in 12 mL CHCI; was added dropwise to the stirred mixture under argon



atmosphere (TLC indicated the 15 Michael coupling was completed). A mixture of TEA
(0.34 mL, 2.5 mmol) and hexyl mercaptan (0.12 mL, 0.82 mmol) dissolved in 5.0 mL
CHCIl; was then added. The mixture was stirred at 25°C for 12 h and quenched with 30
mL saturated NaHCOj; (aq.). The organic layer was washed with water (30 mL) and
brine (30 mL), then dried with anhydrous Na,SO, and concentrated under vacuum. The
crude product was purified by flash column on silica gel eluting with PE/EA (v/v = 6/1
to 3/1) to give BAB (1.1 g, overall yield 52.5% of cascade coupling) as a yellow oil.
MALDI-TOF MS calculated: [M — Furan + Na] © = 1355.344, found: m/z = 1355.690.
'H NMR (300 MHz, CDCls, ppm): 8 7.46 — 7.27 (m, 10H), 6.65 (s, 2H), 5.26 (d, J =
2.8 Hz, 2H), 4.15 (d, J=13.5 Hz, 2H), 3.91 (d, J = 13.5 Hz, 2H), 3.62 — 3.40 (m, 10H),
3.33 (dd, J =20.9, 3.0 Hz, 4H), 2.98 — 2.47 (m, 11H), 2.32 (s, 3H), 1.74 — 1.18 (m,
40H), 0.89 (t, J = 6.8 Hz, 3H). 3C NMR (75 MHz, CDCl;, ppm): 8 195.83, 174.78,
174.65, 174.39, 173.28, 173.20, 136.54, 136.46, 136.43, 129.23, 128.73, 127.68, 83.10,
82.53, 55.72, 55.24, 46.75, 46.28, 45.40, 39.52, 39.02, 36.31, 32.21, 32.05, 31.79,
31.51, 31.29, 30.64, 29.68, 29.31, 28.92, 28.67, 28.40, 28.16, 28.00, 27.24, 27.13,
26.09, 25.91, 22.50, 14.04.

Intermediate BOB was also rigorous characterized by sampling (~ 20 mg) before
adding hexyl mercaptan, which was purified by flash column on silica gel eluting with
PE/EA (v/v=15/1to 2/1): MALDI-TOF MS calculated: [M — Furan + Na] "= 1237.263,
found: m/z=1237.567.'"H NMR (300 MHz, CDCl3, ppm): 6 7.53 — 7.27 (m, 10H), 6.65
(d, J=0.4 Hz, 2H), 6.02 (s, 1H), 5.26 (d, J = 2.8 Hz, 1H), 4.14 (d, J = 13.5 Hz, 1H),
391 (d, J=13.5 Hz, 1H), 3.51 (dt, J=11.7, 7.2 Hz, 8H), 3.33 (dd, J = 21.0, 2.9 Hz,
4H), 2.95 - 2.78 (m, 5H), 2.73 — 2.50 (m, 4H), 2.32 (s, 3H), 1.68 — 1.19 (m, 32H). 13C
NMR (75 MHz, CDCl;, ppm): 6 195.92, 174.85, 174.81, 174.46, 174.43, 173.31,
173.23, 169.73, 168.01, 151.35, 136.54, 136.49, 136.43, 136.37, 139.23, 128.75,
127.72, 127.69, 83.11, 82.54, 55.74, 55.23, 46.29, 45.42, 39.54, 39.10, 38.89, 37.98,
36.37, 36.33, 31.85, 31.59, 30.66, 29.31, 28..94, 28.67, 28.18, 28.15, 28.02, 27.51,
27.26,27.14,26.22,26.11, 25.98, 25.93.



5.2.4 Synthetic route of fluorescent palindromic tetramers for anti-counterfeiting ink
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Scheme S9. Synthetic route of side chain SC-G.!

G-1: To a solution of cystamine hydrochloride (1.5 g, 6.7 mmol) in 30 mL DCM at
room temperature was added TEA (5.0 mL, 37.0 mmol) followed by 4-
dimethylaminopyridine (DMAP, 3.7 g, 37 mmol). The reaction mixture was stirred for
30 minutes. Dansyl chloride (2.0 g, 7.4 mmol) was then added to the reaction mixture
which was stirred for a further 16 hours. Then H,O (50 mL) was added. The mixture
was extracted with 3 x 40 mL DCM and the combined organic layers washed with 40
mL brine, dried with anhydrous Na,SO, and concentrated in vacuo. The residue was
purified by silica gel flash column eluting with PE/DCM/EA (v/v = 6/9/1) to afford G-1
(2.15 g, 93.7%) as a green gum. 'H NMR (300 MHz, CDCl3, ppm): & 8.55 (d, /= 8.5
Hz, 2H), 8.24 (m, 4H), 7.53 (m, 4H), 7.18 (d, J = 7.5 Hz, 2H), 5.30 (t, /= 6.2 Hz, 2H),
3.10 (q, J = 6.3 Hz, 4H), 2.89 (s, 12H), 2.49 (t, J = 6.4 Hz, 4H). 3C NMR (75 MHz,
CDCl;, ppm): & 151.86, 134.51, 130.65, 129.85, 129.67, 129.51, 128.60, 123.26,
118.76, 115.38, 45.46, 41.64, 37.77.

SC-G: To a solution of dansyldisulfide G-1 (1.0 g, 1.6 mmol) in 10 mL methanol at
room temperature was added tris(2-carboxyethyl) phosphine hydrochloride (TCEP,
0.56 g, 1.9 mmol) under argon atmosphere. The reaction mixture was stirred and

monitored by TLC. The mixture was then concentrated for the next reaction

immediately.
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Scheme S10. Synthetic route of side chain SC-R.°]
R-1: Rhodamine B salt (6.0 g, 12.5 mmol) was dissolved in 1 mol/L aqueous NaOH

solution (400 mL) and stirred at room temperature for 2h. The mixture was then



extracted by 3 x 200 mL EA and the combined organic layers were washed once with
1 mol/L aqueous NaOH solution (400 mL) and then brine (400 mL). The organic
solution was dried with Na,SQO,, filtered and concentrated under reduce pressure to
afford rhodamine B lactone R-1 which is used as is in the next reaction.

R-2: To a solution of R-1 (12.5 mmol) mentioned above in anhydrous 1,2-
dichloroethane (DCE, 45 mL) was added POCl; (4.5 mL, 49.5 mmol) dropwise over 5
min under stirring. The mixture solution was then heated at reflux for 4 h. After cooled
to room temperature, the solvent was evaporated under reduced pressure to yield
rhodamine B acyl chloride R-2 which is used as is in the next reaction.

R-3: The crude rhodamine B acyl chloride R-2 (12.5 mmol) was dissolved in
acetonitrile (160 mL) and added dropwise to a solution of cystamine dihydrochloride
(1.6 g, 7.0 mmol) in dry acetonitrile (80 mL) containing 11 mL of TEA over 1-1.5 h in
an ice bath. After stirred for another 8 h, the solvent was removed under reduce pressure
and the residue was redissolved in 100 mL DCM then washed with 2 x 100 mL water
and 100 mL brine. The purple residue was dried in a vacuum oven and purified by
column chromatography eluting with DCM/MeOH (v/v = 100/1 to 20/1), the first pink
band was collected to afford R-3 (4.14 g, overall yield 66.0%). 'H NMR (300 MHz,
CDCls, ppm): & 7.88 (m, 2H), 7.44 (dd, J=5.2, 3.0 Hz, 4H), 7.08 (m, 2H), 6.34 (d, J =
8.6 Hz, 8H), 6.17 (d, J = 7.7 Hz, 4H), 3.24 (m, 20H), 2.25 (m, 4H), 1.12 (t, /= 6.7 Hz,
24H).

SC-R: To a solution of rthodamine B disulfide R-3 (500 mg, 0.5 mmol) in 10 mL
methanol at room temperature was added TCEP (180 mg, 0.6 mmol) under argon
atmosphere. The reaction mixture was stirred and monitored by TLC. The mixture was

then concentrated for the next reaction immediately.
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Scheme S11. Synthetic route of side chain SC-Y.

Y-1:71 Potassium thioacetate (1.0 g, 8.8 mmol) was dissolved in ethanol (10 mL) and



the mixture was dropwise added into the solution of 1,4-dibromobutane (3.8 g, 17.5
mmol) in 20 mL THF under argon atmosphere. After stirred for 12 h, H,O (50 mL) was
added and the mixture was extracted with 3 x 30 mL EA, the combined organic layers
were washed with brine and dried with Na,SO,, the solvent was evaporated under
reduce pressure. The residue was purified by silica gel flash column eluting with PE/EA
(v/v=10/1 to 5/1) to afford Y-1 (1.1 g, 59.5%). 'H NMR (300 MHz, CDCl;, ppm): &
3.41 (t,J=6.6 Hz, 2H), 2.90 (t, J= 7.1 Hz, 2H), 2.33 (s, 3H), 1.93 (m, 2H), 1.74 (m,
2H).

Y-2:181 To a 100 mL round-bottom flask equipped with a condenser was added Y-1 (1.1
g, 5.2 mmol), fluorescein (2.6 g, 7.8 mmol) and potassium carbonate (1.4 g, 10.2 mmol)
in 50 mL DMF under argon atmosphere. The mixture was diluted by 100 mL EA and
washed with 3x50 mL saturated NH4ClI (aq.) to remove DMF. The upper phase was
collected and dried with anhydrous Na,SO,. The solvent was evaporated and the residue
was purified by silica gel flash column eluting with DCM/MeOH (v/v = 80/1 to 15/1)
to afford Y-2 (1.4 g, 58.1%) as a yellow oil. "TH NMR (300 MHz, CDCl;, ppm): 4 8.05
(d, J=7.2 Hz, 1H), 7.65 (m, 2H), 7.16 (d, J= 6.5 Hz, 1H), 6.86 (s, 1H), 6.70 (ddd, J =
21.9,10.0, 4.9 Hz, 5H), 4.00 (t, J = 4.9 Hz, 2H), 2.94 (t, J = 7.0 Hz, 2H), 2.34 (s, 3H),
1.81 (dd, J=24.3, 6.2 Hz, 4H).

SC-Y: Y-2 (460 mg, 1.0 mmol) was dissolved in 3 mL CHCIl; and added to 15 mL in a
25 mL three-neck round-bottom flask equipped with a condenser under argon
atmosphere. The mixture was heated to 55 °C and then concentrated hydrochloric acid
(0.68 mL, 0.82 mol) was added subsequently to the reaction system. The mixture was
then turned red and stirred and refluxed at 55 °C for about 10 h and monitored by 'H
NMR. After cooling to room temperature, the reaction was quenched with 20 mL water
and extracted with DCM (2x20 mL). The organic layer was collected and washed with
200 mL water and then dried with anhydrous Na,SO,. The solvent was evaporated
under vacuum to afford SC-Y (380 mg, 90.0%) as a dark yellow oil. 'H NMR (300
MHz, CDCl;, ppm): 6 8.01 (d, J= 6.9 Hz, 1H), 7.64 (m, 2H), 7.15 (d, /= 7.3 Hz, 1H),
6.80 (s, 1H), 6.65 (m, 5H), 4.00 (t,J= 5.9 Hz, 2H), 2.62 (dt, J= 14.5, 7.4 Hz, 2H), 1.89
(m, 4H).
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Scheme S12. Synthetic route of fluorescent palindromic tetramers (ARA, AGA and
AYA) via CTMMC-integrated IEG.

General procedure: A-MA (330 mg, 0.5 mmol) was dissolved in 5 mL CHCl; with TEA
(250 pL, 1.8 mmol) in a three-neck round-bottom flask. A solution of A-SH (410 mg,
0.6 mmol) in 5 mL CHCIl; was added dropwise to the stirred mixture using syringe
under argon atmosphere (TLC indicated the 15t Michael coupling was completed). A
mixture of TEA (420 pL, 3.0 mmol) and thiol-containing fluorescent side chain (1.0
mmol of SC-R, SC-G or SC-Y, respectively) dissolved in 3.0 mL MeOH and diluted
with 5.0 mL CHCIl; was then added. The mixture was stirred at 25°C for 18 h and
quenched with 20.0 mL saturated NaHCOj; (aq.). The organic layer was washed with
water (20.0 mL) and brine (20.0 mL), then dried with anhydrous Na,SO, and
concentrated under vacuum. The crude product was purified by prep-SEC to afford pure
fluorescent palindromic tetramers.

ARA (spirocyclic form): 460 mg (overall yield 51.9% of CTMMC) after separated by
prep-SEC. MALDI-TOF MS calculated: [M — Furan + Na] * = 1726.602, found: m/z =
1726.796. '"H NMR (300 MHz, CDCls, ppm): & 7.90 (s, 1H), 7.44 (s, 2H), 7.08 (s, 1H),
6.65 (s, 2H), 6.40 (dd, J = 38.5, 14.8 Hz, 6H), 5.26 (s, 2H), 3.40 (dd, /= 37.6, 12.4 Hz,
24H), 2.79 (m, 13H), 2.60 (s, 2H), 2.31 (s, 3H), 1.44 (m, 48H), 1.22 (s, 12H), 0.89 (s,
6H).13C NMR (75 MHz, CDCl;, ppm): 6 195.89, 174.63, 174.39, 173.30, 173.21,
168.06, 153.45, 153.22, 148.85, 136.53, 132.52, 130.91, 128.87, 128.09, 123.77,
122.92, 108.19, 105.32, 97.69, 83.09, 82.53, 64.66, 55.73, 55.21, 46.95, 46.77, 46.34,
44.36, 39.53, 39.05, 32.18, 32.06, 31.98, 31.29, 31.07, 30.63, 30.31, 29.29, 28.97,



28.93, 28.86, 28.79, 28.74, 28.51, 28.40, 28.25, 28.17, 28.06, 27.25, 27.14, 26.18,
26.08, 25.96, 22.49, 14.02, 12.61.

ARA (ring-open form): Treated with TFA in MeOH or DMF. MALDI-TOF MS
calculated: [M — Furan + Na] * = 1704.619, found: m/z = 1704.759.

AGA: 450 mg (overall yield 56.9% of CTMMC) after separated by prep-SEC. MALDI-
TOF MS calculated: [M — Furan + Na] * = 1535.438, found: m/z = 1535.711. '"H NMR
(300 MHz, CDCl;, ppm): 6 8.60 (d, J= 7.6 Hz, 1H), 8.30 (dd, J = 22.7, 7.6 Hz, 2H),
7.57 (q, J = 8.4 Hz, 2H), 7.23 (d, J = 7.3 Hz, 1H), 6.65 (s, 2H), 5.81 (s, 1H), 5.26 (s,
2H), 3.49 (m, 12H), 3.33 (d, J = 15.2 Hz, 2H), 3.24 (m, 2H), 2.78 (m, 19H), 2.31 (s,
3H), 1.49 (m,47H), 0.89 (t,J= 6.8 Hz, 6H). 3C NMR (75 MHz, CDCl;, ppm): 4 195.91,
1174.94, 174.66, 174.06, 173.30, 173.23, 136.54, 136.46, 134.91, 130.44, 129.67,
129.60, 129.55,128.37, 123.46, 115.49, 83.09, 82.53, 55.72, 55.22,46.97,46.77, 45.55,
42.75, 39.52, 39.21, 39.05, 39.01, 38.85, 37.07, 33.30, 32.72, 32.20, 32.17, 32.10,
31.99, 31.92, 31.29, 30.63, 30.02, 29.68, 29.29, 28.97, 28.92, 28.74, 28.40, 28.16,
28.06, 27.25,27.20,27.13, 26.07, 25.95, 24.44, 22.68, 22.49, 14.02.

AYA: 370 mg (overall yield 43.7% of CTMMC) after separated by prep-SEC. MALDI-
TOF MS calculated: [M — Furan + Na] * = 1645.460, found: m/z = 1645.365. '"H NMR
(300 MHz, CDCl;, ppm): 6 8.02 (d, J= 7.3 Hz, 1H), 7.64 (m, 2H), 7.17 (d, /= 7.3 Hz,
1H), 6.78 (d, J=9.6 Hz, 2H), 6.62 (m, 6H), 5.26 (s, 2H), 4.03 (d, /= 4.2 Hz, 2H), 3.50
(m, 14H), 2.76 (m, 15H), 2.32 (s, 3H), 1.91 (s, 2H), 1.47 (m, 50H), 0.88 (t, /= 6.2 Hz,
6H). 3C NMR (75 MHz, CDCls, ppm): 6 196.15, 174.80, 174.77, 174.74, 174.72,
174.61, 174.54, 173.38, 173.30, 173.23, 169.58, 160.62, 158.30, 152.49, 136.53,
136.46, 134.98, 129.66, 129.36, 129.10, 126.84, 125.50, 125.04, 124.00, 112.45,
111.94, 111.28, 111.05, 103.02, 101.42, 101.40, 83.09, 82.53, 67.50, 55.73, 55.19,
46.79, 39.56, 39.07, 32.23, 32.18, 32.01, 31.29, 30.65, 30.32, 29.28, 28.98, 28.94,
28.79, 28.74, 28.40, 28.17, 28.13, 28.05, 27.25, 27.14, 26.13, 26.07, 25.95, 22.49,
14.03.



5.3 Synthetic route of tetramer BDA using cross IEG
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Scheme S13. Synthetic route of side chain SC-D.

D-1: To a 500 mL two-neck round-bottom flask equipped with a 50 mL slow-addition
apparatus were added DL-Homocysteinethiolactone hydrochloride (15.3 g, 0.10 mol),
TEA (66.6 mL, 0.48 mol) and 250 mL DCM. Acetyl chloride (14.1 mL, 0.20 mol) was
dropped into tie stirred mixture at 0 °C in 30 minutes. Then the reaction was moved to
room temperature and stirred for 4h. The insoluble substance was filtered and the
filtrate was washed with 2x250 mL brine. The organic phase was dried with anhydrous
Na,SO, and the solvent was evaporated, and the crude product was purified by silica
gel flash column eluting with EA to afford D-1 (7.7 g, yield: 48.6%) as a white solid.
'H NMR (300 MHz, CDCl;, ppm): 8 6.04 (s, 1H), 4.53 (dt, J=12.9, 6.5 Hz, 1H), 3.32
(dtd, J=17.6, 11.4, 6.0 Hz, 2H), 3.03 — 2.85 (m, 1H), 2.05 (s, 3H), 1.92 (dd, J = 12.5,
7.0 Hz, 1H).

SC-D: D-1 (7.7 g, 48.4 mmol) was dissolved in 40.0 mL DCM in a 50.0 mL round-
bottom flask and stirred at room temperature until TLC monitored the reaction was
complete. The solvent was evaporated and the residue was purified by silica gel flash
column eluting with DCM/MeOH (v/v = 30/1) to afford SC-D (8.7 g, yield: 82.4%) as
a white powder. '"H NMR (300 MHz, CDCls, ppm): 8 6.47 (d, /= 6.9 Hz, 2H), 4.62 (dd,
J=14.2,79 Hz, 1H), 3.30 — 3.12 (m, 2H), 2.69 — 2.44 (m, 2H), 2.12 — 1.87 (m, 5H),
1.64 — 1.46 (m, 3H), 0.93 (t, /= 7.4 Hz, 3H).
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Scheme S14. Synthetic route of BDA via CTMMC-integrated cross IEG.

BDA: A-MA and B-SH precursors to BDA were prepared using the procedures
described in section 5.2.1 and 5.2.3.

A-MA (98 mg, 0.15 mmol) was dissolved in 2 mL CHCl;, TEA (75 uL, 0.54 mmol)
was added subsequently at 25 °C. After that, a solution of B-SH (122 mg, 0.18 mmol)
in 3 mL CHCIl; was added dropwise to the stirred mixture under argon atmosphere
(TLC indicated the 1%t Michael coupling was completed). A mixture of TEA (125 puL,
0.9 mmol) and SC-D (66 mg, 0.3 mmol) dissolved in 3.0 mL CHCl; was then added.
The mixture was stirred at 25°C for 12 h and quenched with 5 mL saturated NaHCO;
(aq.). The organic layer was washed with water (5 mL) and brine (5 mL), then dried
with anhydrous Na,SO,4 and concentrated under vacuum. The crude product was
purified by flash column on silica gel eluting with PE/EA (v/v = 1/1 to 1/3) to give
BDA (113 mg, overall yield 51.2% of cascade coupling) as a yellow oil. MALDI-TOF
MS calculated: [M — Furan + Na] * = 1449.418, found: m/z = 1449.640. 'H NMR (300
MHz, CDCl;, ppm): 8 7.35 (m, SH), 6.65 (m, 4H), 5.26 (d, J = 2.6 Hz, 2H), 4.68 (d, J
=29.0 Hz, 1H), 4.13 (dd, J = 12.0, 7.8 Hz, 1H), 3.92 (dd, J = 13.3, 6.8 Hz, 1H), 3.49
(m, 12H), 3.37 (t,J=2.5 Hz, 1H), 3.30 (t,J=2.5 Hz, 1H), 3.25 (m, 2H), 2.71 (m, 13H),
2.32 (s, 3H), 2.13 (d, J = 13.2 Hz, 2H), 2.08 (s, 3H), 1.45 (m, 22H), 0.91 (m, 6H).



5.3 Synthesis of palindromic octamers via CTMMC-integrated IEG

Due to the lowered reactivity of Br group (chain end) or maleimide (O) group (in the
middle of the chain) during the elongation of the main chain, CTMMC for octamers
shown less efficient than the tetramer. To improve the yield and alleviate the
purification process, we applied THF instead of CHCI; in the 1%* TMMC, and the

intermediates were purified.

5.3.1 Synthetic route of palindromic octamer AAAAAAA
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Scheme S15. Synthetic route of AAAAAAA via CTMMC-integrated IEG.
AAA-MA: AAA (2.1 g, 1.5 mmol) was dissolved in 100 mL of toluene in a 250 mL
round-bottom flask. The mixture was stirred at 110 °C for about 14 h. '"H NMR and
TLC showed the reaction was complete. Toluene was evaporated under vacuum after
the mixture was cooled to room temperature to afford the product AAA-MA (1.7 g,
yield 85.1%) as a yellow oil. 'H NMR (300 MHz, CDCl;, ppm): 8 6.86 (s, 1H), 3.63 —
3.46 (m, 8H), 3.44 (s, 6H), 2.96 — 2.64 (m, 15H), 2.32 (s, 3H), 1.80 — 1.13 (m, 56H),
0.89 (t, J=6.7 Hz, 9H).

AAA-SH: AAA (2.5 g, 1.8 mmol) was dissolved in 30.0 mL CHClI; and diluted with
90.0 mL MeOH in a 250 mL three-neck round-bottom flask equipped with a condenser
under argon atmosphere. The mixture was heated to 55 °C and then concentrated
hydrochloric acid (3.7 mL, 44.4 mmol) was added dropwise to the reaction system. The

mixture was stirred and refluxed at 55 °C for about 16 h and monitored by TLC and 'H



NMR. After cooling to room temperature, the reaction was quenched with 100 mL
water and extracted with DCM (2x50.0 mL). The organic layer was combined and
washed with 50.0 mL water and then dried with anhydrous Na,SO,. The solvent was
evaporated under vacuum to afford AAA-SH (2.3 g, yield 95.0%) as a yellow oil. 'H
NMR (300 MHz, CDCl;, ppm): o 6.65 (s, 2H), 5.26 (d, J = 2.3 Hz, 2H), 3.52 (dd, J =
15.0, 7.6 Hz, 8H), 3.44 (s, 6H), 2.94 — 2.67 (m, 13H), 2.51 (dd, J = 14.6, 7.4 Hz, 2H),
1.79 — 1.16 (m, 56H), 0.89 (t,J = 6.7 Hz, 9H).

AAAOAAA: AAA-MA (1.7 g, 1.3 mmol) was dissolved in 25.0 mL anhydrous THF
in a 100 mL three-neck round-bottom flask equipped with a 100 mL slow-addition
apparatus. TEA (0.71 mL, 5.1 mmol) was added subsequently at 25 °C. AAA-SH (2.3
g, 1.7 mmol) was dissolved in 50.0 mL anhydrous THF and added dropwise to the
stirred solution under argon atmosphere. The mixture was filtered to remove the
insoluble substance and the filter cake was washed with 2x20.0 mL anhydrous THF.
The filtrate was concentrated and redissolved in 30.0 mL CHCI;, then washed
successively with saturated NaHCO; (30.0 mL), water (30.0 mL) and brine (30.0 mL).
The organic layer was dried with anhydrous Na,SO, and concentrated under vacuum.
The crude product was purified by silica gel flash column eluting with PE/EA (v/v =
5/1 to 3/2) to afford AAAOAAA (2.1 g, yield 63.1%) as a yellow oil. MALDI-TOF
MS calculated: [M — Furan + Na] * = 2541.950, found: m/z = 2542.200. "H NMR (300
MHz, CDCl;, ppm):  6.65 (s, 2H), 6.02 (s, 1H), 5.26 (d, J=2.1 Hz, 2H), 3.52 (dd, J =
15.3,7.6 Hz, 16H), 3.44 (s, 12H), 2.94 — 2.63 (m, 29H), 2.32 (s, 3H), 1.63 (tt, J=12.5,
6.1 Hz, 56H), 1.49 — 1.21 (m, 56H), 0.89 (t, J = 6.8 Hz, 18H). 3C NMR (75 MHz,
CDClI;, ppm): 6 195.88, 174.67, 173.29, 173.21, 169.71, 167.99, 151.35, 136.53,
136.49, 117.21, 83.10, 82.53, 55.75, 55.22, 46.75, 39.54, 39.02, 38.86, 37.98, 31.30,
28.99, 28.15, 27.15, 25.97, 22.50, 14.03.

AAAAAAA: To a 50.0 mL three-neck round-bottom flask were added AAAOAAA
(2.1 g, 0.81 mmol), TEA (3.4 mL, 24.3 mmol) and CHCl; (30.0 mL) under argon
atmosphere. Hexyl mercaptan (1.2 mL, 8.1 mmol) was diluted by 4.0 mL. CHCl; and
added dropwise to the solution. The mixture was stirred at 25 °C for 12 h and quenched

with 50.0 mL saturated NaHCOj (aq.). The organic layer was washed with water (50.0



mL) and brine (50.0 mL), then dried with anhydrous Na,SO, and concentrated under
vacuum. The crude product was purified by silica gel flash column eluting with PE/EA
(v/v =5/1 to 2/1) to afford the product AAAAAAA (1.3 g, yield 59.2%) as a yellow
oil. MALDI-TOF MS calculated: [M — Furan + Na] * = 2660.031, found: m/z =
2660.401. '"H NMR (300 MHz, CDCls, ppm): 6 6.65 (s, 2H), 5.26 (d, J= 2.2 Hz, 2H),
3.51(t,J=7.4 Hz, 16H), 3.44 (s, 14H), 2.94 — 2.63 (m, 31H), 2.32 (s, 3H), 1.75-1.50
(m, 60H), 1.35 (ddt, J=10.7, 7.8, 5.2 Hz, 60H), 0.89 (t, J = 6.8 Hz, 21H). 3C NMR
(75 MHz, CDCl;, ppm): & 195.88, 174.67, 173.29, 173.21, 169.71, 167.99, 151.35,
136.49, 117.21, 83.10, 82.53, 55.75, 55.22, 46.75, 39.54, 39.02, 38.86, 37.98, 32.22,
32.08, 31.60, 31.30, 30.64, 28.99, 28.80, 28.41, 28.15, 27.15, 26.26, 26.13, 25.97,
22.50, 14.03.



5.3.2 Synthetic route of palindromic octamer ABABABA
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Scheme S16. Synthetic route of ABABABA via CTMMC-integrated IEG.
ABA-MA: ABA (2.8 g, 2.0 mmol) was dissolved in 80 mL of toluene in a 250 mL
round-bottom flask. The mixture was stirred at 110 °C for about 14 h. 'H NMR and
TLC showed the reaction was complete. Toluene was evaporated under vacuum after
the mixture was cooled to room temperature to afford the product ABA-MA (2.3 g,
yield 86.4%) as a yellow oil. '"H NMR (300 MHz, CDCls, ppm): 6 7.44 —7.27 (m, 5H),
6.86 (s, 1H), 4.15 (d, J=13.5 Hz, 1H), 3.91 (d, /= 13.5 Hz, 1H), 3.62 — 3.46 (m, 8H),
3.44 (s, 4H), 3.36 (d, /= 3.0 Hz, 1H), 3.29 (d, J = 2.9 Hz, 1H), 2.93 — 2.52 (m, 12H),
2.32(s,3H), 1.75-1.17 (m, 48H), 0.89 (t, J = 6.8 Hz, 6H).

ABA-SH: ABA (3.6 g, 2.6 mmol) was dissolved in 25.0 mL CHCl; and diluted with
110 mL MeOH in a 250 mL three-neck round-bottom flask equipped with a condenser
under argon atmosphere. The mixture was heated to 60 °C and then concentrated
hydrochloric acid (5.4 mL, 64.8 mmol) was added dropwise to the reaction system. The
mixture was stirred and refluxed at 60 °C for about 16 h and monitored by TLC and 'H
NMR. After cooling to room temperature, the reaction was quenched with 100 mL
water and extracted with DCM (2x50.0 mL). The organic layer was combined and
washed with 50.0 mL water and then dried with anhydrous Na,SO,. The solvent was
evaporated under vacuum to afford ABA-SH (3.2 g, yield 91.6%) as a yellow oil. 'H
NMR (300 MHz, CDCls, ppm): 6 7.49 — 7.27 (m, 5H), 6.65 (s, 2H), 5.26 (d, J=2.6 Hz,
2H), 4.15 (d, J = 13.5 Hz, 1H), 3.91 (d, J = 13.5 Hz, 1H), 3.52 (dt, /= 10.4, 7.1 Hz,
8H), 3.44 (s, 4H), 3.33 (dd, J=21.1, 2.9 Hz, 2H), 2.95 - 2.67 (m, 13H), 2.51 (dd, J =



14.6, 7.4 Hz, 2H), 1.73 — 1.16 (m, 48H), 0.89 (t, J= 6.8 Hz, 6H).

ABAOABA: ABA-MA (2.3 g, 1.7 mmol) was dissolved in 25.0 mL anhydrous THF
in a 100 mL three-neck round-bottom flask equipped with a 100 mL slow-addition
apparatus. TEA (0.71 mL, 5.1 mmol) was added subsequently at 25 °C. ABA-SH (3.2
g, 2.4 mmol) was dissolved in 50.0 mL anhydrous THF and added dropwise to the
stirred solution under argon atmosphere. The mixture was filtered to remove the
insoluble substance and the filter cake was washed with 2x30.0 mL anhydrous THF.
The filtrate was concentrated and redissolved in 50.0 mL CHCI;, then washed
successively with saturated NaHCO; (30.0 mL), water (30.0 mL) and brine (30.0 mL).
The organic layer was dried with anhydrous Na,SO, and concentrated under vacuum.
The crude product was purified by silica gel flash column eluting with PE/EA (v/v =
5/1to 3/2) to afford ABAOABA (2.2 g, yield 49.0%) as a yellow oil. MALDI-TOF MS
calculated: [M — Furan + Na] * = 2553.856, found: m/z =2554.507. "H NMR (300 MHz,
CDCls, ppm): 6 7.34 (dq, J = 8.7, 7.2 Hz, 10H), 6.65 (s, 2H), 6.02 (s, 1H), 5.26 (d, J =
2.5 Hz, 2H), 4.15 (d, J = 13.5 Hz, 2H), 3.91 (d, J = 13.5 Hz, 2H), 3.51 (t,J=12.1 Hz,
16H), 3.44 (s, 8H), 3.33 (dd, /=21.1, 2.9 Hz, 4H), 2.96 — 2.48 (m, 25H), 2.32 (s, 3H),
1.78 — 1.22 (m, 96H), 0.89 (t, J = 6.7 Hz, 12H). 3C NMR (75 MHz, CDCl;, ppm):
195.90, 174.80, 174.67, 174.40, 173.30, 173.22, 169.71, 167.99, 151.35, 136.53,
136.48, 136.41, 129.22, 128.74, 127.69, 117.20, 83.10, 82.53, 55.74, 55.21, 46.75,
46.29, 45.39, 39.53, 39.04, 37.97, 36.33, 32.22, 32.10, 32.03, 31.85, 31.59, 31.29,
30.64, 29.68, 29.29, 28.73, 28.40, 28.17, 28.15, 28.09, 27.25, 27.15, 26.25, 26.09,
25.96, 22.49, 14.02.

ABABABA: To a 50.0 mL three-neck round-bottom flask were added ABAOABA
(0.67 g, 0.26 mmol), TEA (0.6 mL, 4.3 mmol) and CHCl; (25.0 mL) under argon
atmosphere. Benzyl mercaptan (0.1 mL, 0.85 mmol) was diluted by 5.0 mL CHCIl; and
added dropwise to the solution. The mixture was stirred at 25 °C for 18 h and quenched
with 30.0 mL saturated NaHCOj; (aq.). The organic layer was washed with water (20.0
mL) and brine (20.0 mL), then dried with anhydrous Na,SO, and concentrated under
vacuum. The crude product was purified by silica gel flash column eluting with PE/EA

(v/v = 3/1) to afford the product ABABABA (0.38 g, yield 54.1%) as a yellow oil.



MALDI-TOF MS calculated: [M — Furan + Na] * = 2677.891, found: m/z = 2678.046.
'"H NMR (300 MHz, CDCl;, ppm): 6 7.45 — 7.28 (m, 15H), 6.65 (s, 2H), 5.26 (d, J =
2.6 Hz, 2H), 4.15 (d, J = 13.5 Hz, 3H), 3.91 (d, J = 13.5 Hz, 3H), 3.50 (t, /= 7.1 Hz,
16H), 3.44 (s, 8H), 3.36 (d, J = 3.0 Hz, 3H), 3.29 (d, J = 2.9 Hz, 3H), 2.73 (m, 25H),
2.31(s,3H), 1.76 — 1.19 (m, 96H), 0.89 (t,J= 6.8 Hz, 12H). 3C NMR (75 MHz, CDCl;,
ppm): & 19591, 174.81, 174.68, 174.42, 173.31, 173.23, 136.53, 136.49, 136.42,
129.23, 128.75, 127.70, 83.11, 82.54, 55.75, 55.22, 46.77, 46.75, 46.29, 45.40, 39.54,
39.05, 36.34, 32.23, 32.08, 32.04, 31.92, 31.87, 31.51, 31.31, 30.64, 30.31, 30.19,
30.14, 29.69, 29.36, 29.31, 29.00, 28.80, 28.73, 28.42, 28.15, 28.10, 27.26, 26.14,
26.10, 25.96, 22.69, 22.51, 14.44, 14.13, 14.04.



5.3.3 Synthetic route of palindromic octamer BABCBAB
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Scheme S17. Synthetic route of BABCBAB via CTMMC-integrated IEG.
BAB-MA: BAB (0.17 g, 0.12 mmol) was dissolved in 25 mL of toluene in a 50 mL
round-bottom flask. The mixture was stirred at 110 °C for about 14 h. 'H NMR and
TLC showed the reaction was complete. Toluene was evaporated under vacuum after
the mixture was cooled to room temperature to afford the product BAB-MA (0.15 g,
yield 95.0%) as a yellow oil. '"H NMR (300 MHz, CDCls, ppm): 8 7.53 — 7.27 (m, 10H),
6.86 (s, 1H), 4.15 (d, J=13.5 Hz, 2H), 3.91 (d, J=13.5 Hz, 2H), 3.53 (dt, /= 14.4, 7.0
Hz, 8H), 3.44 (s, 2H), 3.36 (d, J = 2.9 Hz, 2H), 3.29 (d, J = 2.9 Hz, 2H), 2.91 — 2.51
(m, 10H), 2.32 (s, 3H), 1.74 — 1.18 (m, 40H), 0.89 (t, J = 6.8 Hz, 3H).

BAB-SH: BAB (0.21 g, 0.14 mmol) was dissolved in 5.0 mL CHCl; and diluted with
30 mL MeOH in a 50 mL three-neck round-bottom flask equipped with a condenser
under argon atmosphere. The mixture was heated to 60 °C and then concentrated
hydrochloric acid (0.40 mL, 4.8 mmol) was added dropwise to the reaction system. The
mixture was stirred and refluxed at 60 °C for about 16 h and monitored by TLC and 'H
NMR. After cooling to room temperature, the reaction was quenched with 50 mL water
and extracted with DCM (2x30.0 mL). The organic layer was combined and washed
with 30.0 mL water and then dried with anhydrous Na,SO,. The solvent was evaporated
under vacuum to afford BAB-SH (0.19 g, yield 92.3%) as a yellow oil. '"H NMR (300
MHz, CDCl;, ppm): 6 7.34 (dq, J=8.7, 7.1 Hz, 10H), 6.64 (s, 2H), 5.26 (d, J= 2.9 Hz,
2H), 4.14 (d, J = 13.5 Hz, 2H), 3.91 (d, J = 13.5 Hz, 2H), 3.51 (dd, J = 15.5, 7.5 Hz,
8H), 3.44 (s, 2H), 3.36 (d, J = 2.9 Hz, 2H), 3.29 (d, J = 2.9 Hz, 2H), 2.93 — 2.56 (m,



9H), 2.51 (dd, J=14.7, 7.4 Hz, 2H), 1.74 — 1.18 (m, 40H) , 0.89 (t, /= 6.8 Hz, 3H).
BABOBAB: BAB-MA (0.15 g, 0.11 mmol) was dissolved in 10.0 mL anhydrous THF
in a 100 mL three-neck round-bottom flask. TEA (0.6 mL, 4.3 mmol) was added
subsequently at 25 °C. BAB-SH (0.18 g, 2.4 mmol) was dissolved in 20.0 mL
anhydrous THF and added dropwise to the stirred solution under argon atmosphere.
The mixture was concentrated and redissolved in 10.0 mL CHCI;, then washed
successively with saturated NaHCO; (10.0 mL), water (10.0 mL) and brine (10.0 mL).
The organic layer was dried with anhydrous Na,SO, and concentrated under vacuum.
The crude product was purified by silica gel flash column eluting with PE/EA (v/v =
5/1 to 3/2) to afford BABOBAB (0.15 g, yield 52.0%) as a yellow oil. MALDI-TOF
MS calculated: [M — Furan + Na] * = 2565.762, found: m/z = 2565.774. '"H NMR (300
MHz, CDCl;, ppm): 6 7.46 — 7.27 (m, 20H), 6.64 (s, 2H), 6.02 (s, 1H), 5.26 (d, J=2.9
Hz, 2H), 4.15 (d, J = 13.5 Hz, 4H), 3.91 (d, J = 13.5 Hz, 4H), 3.58 — 3.46 (m, 16H),
3.44 (s, 4H), 3.33 (dd, J=20.8, 2.9 Hz, 8H), 2.96 —2.51 (m, 21H), 2.32 (s, 3H), 1.71 —
1.21 (m, 80H), 0.89 (t, J = 7.0 Hz, 6H). 13C NMR (75 MHz, CDCl;, ppm): 8 195.93,
174.81, 174.68, 174.42, 173.31, 173.23, 169.72, 169.66, 168.00, 151.35, 136.53,
136.48,136.41,129.22,128.74, 127.69, 83.10, 82.53, 55.74, 55.21, 46.76, 46.29, 45.40,
39.54, 39.04, 37.98, 36.33, 32.22, 32.07, 31.90, 31.61, 31.42, 31.30, 30.64, 30.30,
30.18, 29.68, 29.30, 28.98, 28.71, 28.41, 28.14, 28.02, 27.51, 27.25, 27.14, 26.10,
25.93,22.68, 22.50, 14.43, 14.12, 14.03.

BABCBAB: To a 25.0 mL three-neck round-bottom flask were added BABOBAB
(0.07 g, 0.027 mmol), TEA (0.3 mL, 2.2 mmol) and CHCI; (6.0 mL) under argon
atmosphere. Then p-isopropyl thiophenol (Side chain C, 0.1 mL, 0.64 mmol) was
diluted by 0.50 mL. CHC]l; and added dropwise to the solution. The mixture was stirred
at 25 °C for 18 h and quenched with 10.0 mL saturated NaHCOj; (aq.). The organic
layer was washed with water (10.0 mL) and brine (10.0 mL), then dried with anhydrous
Na,S0,4 and concentrated under vacuum. The crude product was purified by silica gel
flash column eluting with PE/EA (v/v = 4/1 to 2/1) to afford the product BABCBAB
(0.04 g, yield 54.0%) as a yellow oil. MALDI-TOF MS calculated: [M — Furan + Na] *
= 2717.828, found: m/z = 2718.203. '"H NMR (300 MHz, CDCl;, ppm): 6 7.48 — 7.27



(m, 22H), 7.20 (d, J = 8.1 Hz, 2H), 6.64 (s, 2H), 5.26 (d, J = 2.8 Hz, 2H), 4.15 (d, J =
13.5 Hz, 4H), 3.91 (d, J = 13.5 Hz, 4H), 3.67 (dd, J = 26.7, 2.9 Hz, 2H), 3.50 (dd, J =
11.5, 4.8 Hz, 16H), 3.44 (s, 4H), 3.33 (dd, J = 20.4, 2.2 Hz, 8H), 2.95 — 2.51 (m, 22H),
2.32 (s, 3H), 1.71 — 1.15 (m, 86H), 0.89 (t, J = 6.9 Hz, 6H). 13C NMR (75 MHz, CDCL,,
ppm): & 195.93, 174.81, 174.67, 174.42, 173.48, 173.23, 150.92, 136.48, 136.41,
135.11, 129.23, 128.74, 127.69, 83.10, 82.53, 55.74, 55.21, 51.92, 46.91, 46.76, 46.29,
45.40, 39.54, 39.05, 36.33, 34.86, 34.52, 33.86, 32.23, 32.08, 31.86, 31.43, 31.30,
30.64, 30.30, 30.18, 29.69, 29.31, 28.99, 28.80, 28.72, 28.41, 28.11, 27.26, 27.15,
26.11,25.93, 23.81, 22.68, 22.50, 14.03.



5.3.4 Synthetic route of palindromic octamer ABADABA
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Scheme S18. Synthetic route of ABADABA via CTMMC-integrated IEG.

The intermediate ABAOABA were prepared using the procedures described in section
53.2.

ABADABA: To a 25.0 mL three-neck round-bottom flask were added ABAOABA
(0.24 g, 0.092 mmol), TEA (0.1 mL, 0.72 mmol) and CHCI; (10.0 mL) under argon
atmosphere. Then SC-D (0.04 mg, 0.18 mmol) was dissolved in 3.0 mL CHCIl; and
added dropwise to the solution. The mixture was stirred at 25 °C for 12 h and quenched
with 10.0 mL saturated NaHCOj; (aq.). The organic layer was washed with water (10.0
mL) and brine (10.0 mL), then dried with anhydrous Na,SO, and concentrated under
vacuum. The crude product was purified by silica gel flash column eluting with PE/EA
(v/v = 1/3) to afford the product ABADABA (0.11 g, yield 42.3%) as a yellow oil.
MALDI-TOF MS calculated: [M — Furan + Na] * = 2771.965, found: m/z = 2772.322.
'"H NMR (300 MHz, CDCl3, ppm): 6 7.44 — 7.27 (m, 10H), 6.86 — 6.60 (m, 4H), 5.26
(d, J=2.4 Hz, 2H), 4.63 (d, J = 32.3 Hz, 1H), 4.15 (d, J = 13.5 Hz, 4H), 3.91 (d, J =
13.4 Hz, 4H), 3.50 (t, J = 7.2, 16H), 3.46 — 3.43 (m, 10H), 3.33 (dd, J = 21.2, 2.9 Hz,
4H), 3.24 (s, 2H), 2.96 — 2.48 (m, 27H), 2.32 (s, 3H), 2.15 (s, 2H), 2.05 (s, 3H), 1.77 —
1.20 (m, 98H), 0.97 — 0.86 (m, 15H). 3C NMR (75 MHz, CDCl;, ppm): § 19591,
174.81, 174.68, 174.42, 173.31, 173.23, 136.54, 136.42, 129.23, 128.75, 127.70, 83.11,
82.54, 55.75, 55.22, 46.78, 46.31, 45.42, 39.54, 39.06, 36.34, 32.23, 32.08, 31.87,
31.30, 30.65, 29.69, 29.30, 28.99, 28.80, 28.75, 28.42, 28.15, 27.26, 27.15, 26.11,
25.97,22.64, 22.50, 14.03, 11.41.



SECTION B. Supplementary Figures
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Figure S4. '"H NMR spectrum of compound M-2 in CDCI; (Bruker, 300 MHz, TMS)
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Figure S5. 'H NMR spectrum of compound M-3 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S6. 'H NMR spectrum of compound S-1 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S7. 'H NMR spectrum of monomer 1 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S8. 'H NMR spectrum of compound 1-MA in CDCl; (Bruker, 300 MHz, TMS)
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Figure S9. 'H NMR spectrum of compound 1-SH in CDCl; (Bruker, 300 MHz, TMS)
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Figure S10. '"H NMR spectrum of compound 2 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S11. 'H NMR spectrum of compound 3 in CDCl; (Bruker, 300 MHz, TMS)



€
b h\f

Br o s 8,0

)

fﬁ\-
N N
b oY a/\e;\?sgo a/\/_\/\s 1

CHC1

[k

8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

Figure S12. '"H NMR spectrum of dimer A in CDCl; (Bruker, 300 MHz, TMS)

M, = 1100 Da (1.01)
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Figure S13. SEC trace of A.
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Figure S14. "H NMR spectrum of dimer B in CDCI; (Bruker, 300 MHz, TMS)

M, = 1000 Da (1.01)
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Figure S15. SEC trace of B.
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Figure S16. "H NMR spectrum of tetramer AOA in CDCl; (Bruker, 300 MHz, TMS)
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Cal. = 1225.357
Exp. =1225.517

M, = 1400 Da (1.01)
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Figure S17. (a) SEC trace of AOA; (b) MALDI-TOF mass spectrum of AOA.
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Figure S18. '"H NMR spectrum of tetramer AAA in CDCl; (Bruker, 300 MHz, TMS)
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Figure S19. (a) SEC trace of AAA; (b) MALDI-TOF mass spectrum of AAA.
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Figure S20. '"H NMR spectrum of tetramer ABA in CDCI; (Bruker, 300 MHz, TMS)
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Figure S21. (a) SEC trace of ABA; (b) MALDI-TOF mass spectrum of ABA.
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Figure S22. '"H NMR spectrum of tetramer BOB in CDCI; (Bruker, 300 MHz, TMS)
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Figure S23. (a) SEC trace of BOB; (b) MALDI-TOF mass spectrum of BOB.
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Figure S24. '"H NMR spectrum of tetramer BAB in CDCl; (Bruker, 300 MHz, TMS)
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Figure S25. (a) SEC trace of BAB; (b) MALDI-TOF mass spectrum of BAB.
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Figure S26. '"H NMR spectrum of compound G-1 in CDCI; (Bruker, 300 MHz, TMS)
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Figure S27. '"H NMR spectrum of compound R-3 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S28. '"H NMR spectrum of compound Y-1 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S29. '"H NMR spectrum of compound Y-2 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S30. '"H NMR spectrum of tetramer ARA in CDCl; (Bruker, 300 MHz, TMS)
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Figure S31. (a) SEC trace of ARA; (b) MALDI-TOF mass spectrum of ARA.
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Figure S32. '"H NMR spectrum of tetramer AGA in CDCl; (Bruker, 300 MHz, TMS)
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Figure S33. (a) SEC trace of AGA; (b) MALDI-TOF mass spectrum of AGA.
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Figure S34. "H NMR spectrum of tetramer AYA in CDCl; (Bruker, 300 MHz, TMS)
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Figure S35. (a) SEC trace of AYA; (b) MALDI-TOF mass spectrum of AYA.
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Figure S36. '"H NMR spectrum of compound D-1 in CDCl; (Bruker, 300 MHz, TMS)
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Figure S37. '"H NMR spectrum of compound SC-D in CDCl; (Bruker, 300 MHz,
TMS)
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Figure S38. '"H NMR spectrum of tetramer BDA in CDCI; (Bruker, 300 MHz, TMS)
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Figure S39. (a) SEC trace of BDA; (b) MALDI-TOF mass spectrum of BDA.
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Figure S40. "H NMR spectrum of octamer AAAOAAA in CDCl; (Bruker, 300 MHz,

TMS)
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Figure S41. (a) SEC trace of AAAOAAA; (b) MALDI-TOF mass spectrum of
AAAOAAA.
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Figure S42. '"H NMR spectrum of octamer AAAAAAA in CDCl; (Bruker, 300 MHz,

TMS)
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Figure S43. (a) SEC trace of AAAAAAA; (b) MALDI-TOF mass spectrum of
AAAAAAA.
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Figure S44. "H NMR spectrum of octamer ABAOABA in CDCl; (Bruker, 300 MHz,

TMS)
[M-Furan+Na]"
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Figure S45. (a) SEC trace of ABAOABA; (b) MALDI-TOF mass spectrum of
ABAOABA.
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Figure S46. '"H NMR spectrum of octamer ABABABA in CDCl; (Bruker, 300 MHz,
TMS)
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Figure S47. (a) SEC trace of ABABABA; (b) MALDI-TOF mass spectrum of
ABABABA.
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Figure S48. '"H NMR spectrum of octamer BABOBAB in CDCl; (Bruker, 300 MHz,
TMS)
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M, = 2700 Da (1.02)

2564 2566 2568 2570 2572 2574 2576

T T T T T T T
7.5 8.0 8.5 9.0 9.5 10.0 10.5

Retention Time (min)

T T T T T 1
1000 2000 3000 4000 5000 6000
m/z

Figure S49. (a) SEC trace of BABOBAB; (b) MALDI-TOF mass spectrum of
BABOBAB.
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Figure S50. "H NMR spectrum of octamer BABCBAB in CDCl; (Bruker, 300 MHz,

TMS)
[M-Furan+Na]"
Cal. =2717.828
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Figure S51. (a) SEC trace of BABCBAB; (b) MALDI-TOF mass spectrum of
BABCBAB.
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Figure S52. "H NMR spectrum of octamer ABADABA in CDCl; (Bruker, 300 MHz,
TMS)

(a) (b) [M-Furan+Na]"
Cal. = 2771.965
Exp. = 2772.322

M, =3200 Da (1.01)
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Figure S53. (a) SEC trace of ABADABA; (b) MALDI-TOF mass spectrum of
ABADABA.



SECTION C. Computer Simulation of Bond Dissociation Energy

(BDE) and proposed mechanism of MS/MS induced synergistic C-S

bond cleavages

srcre| “SC9[eese s | e | e
e | | S| e
(kcal/mol) o} o} 0 o
C-S 57.2 56.8 7.9 14.3
S-C ~69.2
C-C ~79.9

Table S1. Computer simulations of bond dissociation energy (BDE) of chemical bonds
of succinimide thioether and its derivates; The molecular geometry optimized using the
Density Functional Theory method of the three parameter Becke-style hybrid functional
(B3LYP) with the basis set of 6-311+g(d,p). All calculations were performed using
GAUSSIAN 2009 package.
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Figure S54. Proposed mechanism of the synergistic cleavages in MALDI-TOF

MS/MS.



SECTION D. MALDI-TOF MS/MS analysis of oligomers

Precursor ions were all used furan-deprotected signals [M - Furan + Na] * due to the
furan groups were cleaved from o-maleimide groups under high laser intensity in
MALDI. Based on BDE calculation, the dissociation in tandem MS were mainly
occurred at C-S or S-C bonds and the detected ions were mainly stable fragments. The
nomenclature of fragments in backbone was adapted from the one proposed by
Wesdemiotis et al.[’) while fragments in side chain were marked for a clear expression.

The structure analysis of each fragment was less than 0.1% mass error.

m = Unit number (a to w terminal)
T n = Unit number (w to a terminal)

s = Side chain

N \/
* ~
‘ WS * The synergetic cleavage induced major

Jm () fragments are marked as q,qs, here.
e e e ;! N -
\\ / +
\/ Na
;rf B=;.%.>§rq° e fi’;?ﬁ? 2 ol
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Figure S55. Illustration of the general nomenclature of fragments in tandem MS.
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Figure S56. MALDI-TOF MS/MS spectrum of ABA.

Table S2. Analysis of probable fragmented structures of ABA in MALDI-TOF

MS/MS.
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Figure S59. MALDI-TOF MS/MS spectrum of ABABABA.

Table S5. Analysis of probable fragmented structures of ABABABA in MALDI-TOF

MS/MS.
Number m/Zea. | Probable Probable structure (+ Na*)
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Figure S60. MALDI-TOF MS/MS spectrum of BABCBAB.

Table S6. Analysis of probable fragmented structures of BABCBAB in MALDI-TOF

MS/MS.
Number m/Ze. | Probable Probable structure (+ Na*)

m/z., | fragments
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Figure S61. MALDI-TOF MS/MS spectrum of ABADABA.
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SECTION E. A blind test of sequencing an “unknown” octamer

Structure pool Fragmentation pattern
@,S‘, . g o o
side chain A side chain B side chain C  side chain D [—h ,\; s 4‘"\5' 5 e ——> [ @-terminus
1171 Da 123.0 Da 151.1 Da 217.1 Da i " b o
i %«& M)
5

~.§‘,0 . . ‘ o f oyl concomitant
- ONWS.- Bre A terminal groups ,\:E;:*" “"‘iﬁ%n s ;m fragmentations

backbone spacer  a-terminal  w-terminal [M+32]

212.1 Da 78.9 Da 44.0 Da

Table S8. The clues provided for the blind test, including a structure pool and

fragmentation patterns.

Decipher procedure described by the undergraduate student in the blind test

1. Mark the main fragments with relatively high abundance or with a concomitant
[M+32] signal, and then get the intervals;

2. From right to left, I can get the side chain information through the first and second
intervals, that is 117.98 Da means hexyl mercaptan (side chain A) and 123.24 Da
means benzyl mercaptan (side chain B). There is only two fragments in this area,
which means the polymer may contain two side chains;

3. The third interval is 406.36 Da, probably means side chain A, backbone spacer and
Br-terminal;

4. The five consecutive intervals present in a alternating mode. Additionally, 335 Da
point to the benzyl mercaptan-containing unit (B) and 329 Da present the hexyl
mercaptan-containing unit (A), which confirm the conclusion of procedure 2;

5. From the fragmentation pattern, the signal 607.043 Da could assign to a ion equiped
with two backbone spacer, hexyl mercaptan-containing unit (A) and o-terminal;

6. Overall, the sequcne should be ABABABA.
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Figure S62. The marked MALDI-TOF MS/MS spectrum of the “unknown” octamer

by the undergraduate student in blind test.



SECTION F. An anti-counterfeit system based on fluorescent tags in

inkjet ink.
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Figure S63. a) General illustration of the anti-counterfeit system based on fluorescent
palindromic sequence-defined polymer tags in inkjet ink. b) The chemical structure of
fluorescent palindromic sequence-defined polymer tags, containing dansylamine
(green), rhodamine B (red) and fluorescein group (yellow) respectively. ¢) The anti-
counterfeit inkjet ink was produced by commercial inkjet ink mixed with fluorescent
palindromic sequence-defined polymer tags accordingly. d) A cartridge filled with anti-
counterfeit inkjet ink. e) Printing patterns (color barcodes) using the inkjet printer. f)
The anti-counterfeit inkjet ink can be extracted by immersing color strips, which cut
from the color barcodes, into the solvent of DMF or MeOH. The solutions were
concentrated to get the tandem MS samples. g) MALDI-TOF MS and MS/MS spectra
of an extracted sample, which matched well with the anti-counterfeit sequence

information AGA.
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