# **Supporting Information for:**

Rational synthesis of epoxy-functional spheres, worms and vesicles by

*RAFT* aqueous emulsion polymerisation of glycidyl methacrylate

Fiona L. Hatton <sup>a†</sup>, \* Matthew J. Derry <sup>a‡</sup> and Steven P. Armes <sup>a\*</sup>

<sup>a</sup> Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK

<sup>†</sup> Present address: Department of Materials, Loughborough University, Loughborough, LE113TU, UK

<sup>‡</sup> Present address: Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK

\*Email: <u>f.hatton@lboro.ac.uk</u> (F.L.H.)

\*Email: <u>s.p.armes@sheffield.ac.uk</u> (S.P.A.)



**Figure S1.** RAFT solution polymerization of glycerol monomethacrylate (GMA) in ethanol at 70 °C using 2-cyano-2-propyl dithiobenzoate (CPDB) and 4,4'-azobis(4-cyanopentanoic acid) (ACVA) when targeting a PGMA DP of 31 and using a CPDB/ACVA molar ratio of 5.0. (A) Conversion vs. time curve and corresponding semilogarithmic plot and (B) evolution in  $M_n$  and  $\tilde{D}$  with monomer conversion.



**Figure S2.** RAFT aqueous emulsion polymerization of glycidyl methacrylate (GlyMA) at 50 °C targeting PGMA<sub>28</sub>-PGlyMA<sub>55</sub> (red diamonds) and PGMA<sub>28</sub>-PGlyMA<sub>100</sub> (black circles). Reactions were conducted at 10% w/w solids using a PGMA<sub>28</sub>/VA-044 molar ratio = 4.0. (A) Conversion vs. time curves and corresponding semilogarithmic plots and (B) evolution in  $M_n$  (filled symbols) and D (open symbols) with monomer conversion.

**Table S1.** Summary of final conversions, molecular weight data, DLS data ( $D_z$  and polydispersity) and TEMassigned morphologies obtained for a series of PGMA<sub>28</sub>-PGlyMA<sub>n</sub> diblock copolymer nano-objects at 5-30% w/w solids prepared via RAFT aqueous emulsion polymerization of GlyMA at 50 °C using a PGMA<sub>28</sub> macro-CTA using a PGMA<sub>28</sub>/VA-044 molar ratio = 4.0. [N.B. PGMA and PGlyMA blocks are denoted as 'G and 'Gly'].

| Solids<br>(% w/w) | Target<br>copolymer<br>composition                                                                                                                                                                                                                                                                                                                                                                       | Conv.<br>(%)ª                                                      | <i>M</i> n <sup>b</sup><br>(g mol⁻¹)                                                                                           | <i>M</i> <sub>w</sub> <sup>b</sup><br>(g mol⁻¹)                                                                                | Đ♭                                                                                           | D <sub>z</sub><br>(nm)                                                    | PDI                                                                                                                  | TEM<br>morphology<br>c                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 40                | PGMA <sub>28</sub><br>macro-CTA                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                 | 8 300                                                                                                                          | 9 600                                                                                                                          | 1.15                                                                                         | -                                                                         | -                                                                                                                    | -                                                                           |
| 5                 | $\begin{array}{c} G_{28}\text{-}Gly_{40} \\ G_{28}\text{-}Gly_{50} \\ G_{28}\text{-}Gly_{55} \\ G_{28}\text{-}Gly_{68} \\ G_{28}\text{-}Gly_{75} \\ G_{28}\text{-}Gly_{85} \\ G_{28}\text{-}Gly_{90} \end{array}$                                                                                                                                                                                        | >99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99<br>99                | 15 600<br>17 100<br>18 000<br>19 600<br>21 700<br>22 600<br>22 200                                                             | 17 800<br>20 100<br>21 400<br>23 800<br>27 800<br>29 800<br>31 800                                                             | 1.14<br>1.17<br>1.19<br>1.21<br>1.28<br>1.32<br>1.44                                         | 24<br>26<br>29<br>44<br>127<br>398<br>767                                 | 0.16<br>0.07<br>0.06<br>0.12<br>0.25<br>0.69<br>0.49                                                                 | S<br>S<br>S/SW<br>S/SW<br>S/SW<br>S/SW<br>W/V                               |
|                   | $\begin{array}{c} G_{28}\text{-}Gly_{100} \\ G_{28}\text{-}Gly_{109} \\ G_{28}\text{-}Gly_{120} \\ \end{array}$                                                                                                                                                                                                                                                                                          | 97<br>98<br>98                                                     | 25 600<br>25 200<br>_25 900_                                                                                                   | 43 600<br>38 100<br>_44 700_                                                                                                   | 1.70<br>1.51<br><u>1.73</u>                                                                  | 2606<br>513<br>_1588                                                      | 0.31<br>0.55<br><u>0.97</u>                                                                                          | V<br>V<br>V                                                                 |
| 10                | $\begin{array}{c} G_{28}\text{-}Gly_{20} \\ G_{28}\text{-}Gly_{30} \\ G_{28}\text{-}Gly_{40} \\ G_{28}\text{-}Gly_{45} \\ G_{28}\text{-}Gly_{50} \\ G_{28}\text{-}Gly_{55} \\ G_{28}\text{-}Gly_{60} \\ G_{28}\text{-}Gly_{65} \end{array}$                                                                                                                                                              | >99<br>>99<br>>99<br>>99<br>>99<br>98<br>>99<br>98                 | 10 800<br>12 500<br>14 100<br>14 400<br>15 000<br>15 300<br>17 000<br>15 900                                                   | 13 200<br>14 700<br>17 000<br>17 700<br>18 300<br>18 700<br>21 500<br>20 500                                                   | 1.22<br>1.17<br>1.21<br>1.23<br>1.21<br>1.22<br>1.27<br>1.29                                 | 15<br>21<br>28<br>59<br>113<br>244<br>2204<br>2050                        | 0.05<br>0.17<br>0.13<br>0.16<br>0.20<br>0.68<br>1.00<br>1.00                                                         | S<br>S/SW<br>S/SW<br>W<br>W<br>W/V<br>W/V                                   |
|                   | $\begin{array}{c} G_{28}\text{-}Gly_{70} \\ G_{28}\text{-}Gly_{75} \\ G_{28}\text{-}Gly_{80} \\ G_{28}\text{-}Gly_{100} \end{array}$                                                                                                                                                                                                                                                                     | >99<br>99<br>>99<br>>99                                            | 17 000<br>17 700<br>18 900<br>20 900                                                                                           | 23 000<br>23 100<br>25 700<br>29 900                                                                                           | 1.36<br>1.30<br>1.36<br>1.43                                                                 | 216<br>64<br>72<br>89                                                     | 0.49<br>0.04<br>0.04<br>0.17                                                                                         | w/v<br>V<br>V                                                               |
| 20                | $\begin{array}{c} G_{28}\text{-}Gly_{20} \\ G_{28}\text{-}Gly_{25} \\ G_{28}\text{-}Gly_{30} \\ G_{28}\text{-}Gly_{35} \\ G_{28}\text{-}Gly_{40} \\ G_{28}\text{-}Gly_{45} \\ G_{28}\text{-}Gly_{50} \\ G_{28}\text{-}Gly_{55} \\ G_{28}\text{-}Gly_{55} \\ G_{28}\text{-}Gly_{60} \\ G_{28}\text{-}Gly_{60} \\ G_{28}\text{-}Gly_{70} \\ G_{28}\text{-}Gly_{80} \\ G_{28}\text{-}Gly_{100} \end{array}$ | >99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99 | 10 900<br>11 500<br>12 200<br>12 700<br>13 500<br>14 600<br>14 800<br>15 600<br>15 700<br>16 900<br>17 200<br>18 800<br>21 100 | 13 200<br>13 300<br>14 000<br>15 400<br>15 700<br>17 400<br>17 400<br>19 200<br>18 700<br>20 900<br>21 200<br>23 400<br>28 700 | 1.21<br>1.15<br>1.15<br>1.21<br>1.17<br>1.20<br>1.18<br>1.23<br>1.23<br>1.23<br>1.25<br>1.36 | 16<br>24<br>63<br>139<br>1079<br>704<br>114<br>79<br>45<br>44<br>46<br>88 | 0.05<br>0.03<br>0.10<br>0.18<br>0.25<br>0.54<br>0.78<br>0.06<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.06<br>0.17 | S<br>S/SW<br>S/SW<br>W/V<br>W/V<br>S/W/V<br>V<br>V<br>V<br>V<br>V<br>V<br>V |
| 30                | $\begin{array}{c} -20 = 9 \\ 100 = -2 \\ G_{28} - Gly_{20} \\ G_{28} - Gly_{30} \\ G_{28} - Gly_{35} \\ G_{28} - Gly_{40} \\ G_{28} - Gly_{50} \\ G_{28} - Gly_{60} \\ G_{28} - Gly_{80} \end{array}$                                                                                                                                                                                                    | >99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99<br>>99        | 11 000<br>12 500<br>13 100<br>13 800<br>15 100<br>16 100<br>18 500                                                             | 12 700<br>14 300<br>16 000<br>16 000<br>17 700<br>19 100<br>23 000                                                             | 1.16<br>1.14<br>1.22<br>1.16<br>1.17<br>1.19<br>1.24                                         | 16<br>42<br>110<br>1285<br>289<br>56<br>45                                | 0.13<br>0.18<br>0.22<br>0.84<br>0.36<br>0.03<br>0.02                                                                 | s/sw<br>s/sw<br>w<br>w<br>w/mlv<br>v<br>v                                   |

<sup>a</sup> Calculated from <sup>1</sup>H NMR spectroscopy studies conducted in  $d_6$ -DMSO after a reaction time of 1 h.,

<sup>b</sup> Determined by GPC analysis with DMF eluent containing 10 mM LiBr and calibrated against PMMA standards.

° Morphologies assessed by TEM; s = sphere, sw = short worm, w = worm, v = vesicle, mlv = multilamellar vesicles



**Figure S3.** Representative TEM images recorded for  $PGMA_{28}$ -PGlyMA<sub>n</sub> diblock copolymer nano-objects prepared at 10% w/w solids, where n = 20, 30, 40, 45, 50, 55, 60, 65, 70, 75, 80 and 100. Scale bars represent 200 nm. For brevity, the PGMA block is denoted by 'G' and the PGlyMA block is denoted by 'Gly'. Subscripts refer to the mean DP of each block.



**Figure S4.** SAXS pattern recorded for a 1.0% w/w aqueous dispersion of PGMA<sub>28</sub>-PGlyMA<sub>75</sub> diblock copolymer nano-objects originally prepared at 10% w/w solids. The experimental data are denoted by open green circles while the solid black line indicates the unsatisfactory data fit obtained when attempting to use a spherical micelle model. This is because these nanoparticles possess a vesicular (rather than spherical) morphology.



**Figure S5.** SAXS patterns recorded for 1.0% w/w aqueous dispersions of  $PGMA_{28}$ -PGlyMA<sub>n</sub> diblock copolymer nano-objects originally prepared at 10% w/w solids. (i)  $PGMA_{28}$ -PGlyMA<sub>20</sub>, (ii)  $PGMA_{28}$ -PGlyMA<sub>50</sub>, (iii)  $PGMA_{28}$ -PGlyMA<sub>50</sub> and (iv)  $PGMA_{28}$ -PGlyMA<sub>100</sub>. The experimental data are denoted by open circles while the solid black lines indicate the data fits obtained when using (i) a spherical micelle (blue curve), (ii) a worm-like micelle (red curve) or (iii) a vesicle model (green curve). For clarity, the red, green and purple curves are offset by arbitrary factors of  $10^2$ ,  $10^4$  and  $10^6$  respectively.

**Table S2.** Structural parameters obtained from SAXS analysis of 1.0% w/w aqueous dispersions of PGMA<sub>28</sub>-PGlyMA<sub>n</sub> nano-objects originally prepared at 10% w/w solids using appropriate sphere,<sup>1</sup> worm<sup>1</sup> and vesicle<sup>2</sup> models. Representative parameters are denoted as follows:  $V_{Gly}$  is the volume of the PGlyMA block,  $\varphi$  is the volume fraction of the nano-object,  $R_s$  represents the volume-average radius of the spherical cores,  $R_w$  represents the cross-sectional radius of the worm cores,  $R_m$  represents the radius from the centre of the vesicle to the centre of the membrane,  $T_m$  is the mean thickness of the hydrophobic component of the vesicle membrane, and  $\sigma_x$  denotes the standard deviation of the relevant parameter ( $x = R_s, R_w, R_m$  or  $T_m$ ).  $R_g$  denotes the mean radius of gyration for the PGMA<sub>28</sub> stabilizer chains.  $D_s$  denotes the overall volume-average diameter of the spheres,  $D_w$  denotes the overall volume-average diameter of the vesicles and  $D_z$  is the mean hydrodynamic diameter reported by DLS. The volume of the PGMA<sub>28</sub> block,  $V_{PGMA}$ , used to fit the SAXS patterns was 5.69 nm<sup>3</sup> and  $x_{sol}$  was zero in all cases in all cases.

| Target copolymer composition             | Scattering<br>model | V <sub>Gly</sub><br>(nm³) | Volume<br>fraction<br>(φ) | R <sub>s</sub> /σ <sub>Rs</sub><br>(nm) | R <sub>w</sub> /σ <sub>Rw</sub><br>(nm) | R <sub>m</sub> /σ <sub>Rm</sub><br>(nm) | T <sub>m</sub> /σ <sub>τm</sub><br>(nm) | R <sub>g</sub> (nm) | D <sub>s</sub> , D <sub>w</sub> or D <sub>v</sub><br>(nm) <sup>a</sup> | D <sub>z</sub><br>(nm) |
|------------------------------------------|---------------------|---------------------------|---------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------|------------------------------------------------------------------------|------------------------|
| PGMA <sub>28</sub> -PGIyMA <sub>20</sub> | sphere              | 3.78                      | 0.0094                    | 2.60 / 0.97                             | -                                       | -                                       | -                                       | 1.97                | 13.1                                                                   | 15                     |
| PGMA <sub>28</sub> -PGIyMA <sub>30</sub> | sphere              | 5.67                      | 0.0018                    | 4.09 / 0.92                             | -                                       | -                                       | -                                       | 1.84                | 15.5                                                                   | 21                     |
| PGMA <sub>28</sub> -PGIyMA <sub>50</sub> | worm                | 9.44                      | 0.0080                    | -                                       | 6.17 / 0.86                             | -                                       | -                                       | 1.37                | 17.8                                                                   | 16.6*                  |
| PGMA <sub>28</sub> -PGIyMA <sub>55</sub> | worm                | 10.39                     | 0.0074                    | -                                       | 6.69 / 0.81                             | -                                       | -                                       | 1.41                | 19.0                                                                   | 19.1*                  |
| PGMA <sub>28</sub> -PGIyMA <sub>75</sub> | vesicle             | 14.16                     | 0.0082                    | -                                       | -                                       | 20.63 / 4.81                            | 8.24 / 1.57                             | 1.75                | 53.0                                                                   | 64                     |
| PGMA <sub>28</sub> -PGIyMA <sub>80</sub> | vesicle             | 15.11                     | 0.0083                    | -                                       | -                                       | 24.61 / 6.58                            | 9.00 / 1.53                             | 1.75                | 61.7                                                                   | 72                     |

\*Worm cross-sectional diameter estimated by TEM (since this parameter is not accessible using DLS).

<sup>a</sup> When fitted using a spherical micelle model, the overall volume-average sphere diameter,  $D_s$ , was calculated using  $D_s = 2R_s + 4R_g$ . When fitted using a worm model, the cross-sectional volume-average worm diameter,  $D_w$ , was calculated using  $D_w = 2R_s + 4R_g$ . When fitted using a vesicle model, the overall volume-average vesicle diameter,  $D_v$ , was calculated using  $D_v = 2R_m + T_m + 2R_g$ .

**Table S3.** Nitrogen and sulfur microanalyses obtained before and after L-cysteine derivatization of 5% w/w aqueous dispersions of PGMA<sub>28</sub>-PGlyMA<sub>25</sub>, PGMA<sub>28</sub>-PGlyMA<sub>40</sub> and PGMA<sub>28</sub>-PGlyMA<sub>80</sub> nano-objects originally prepared at 20% w/w solids.

| Target polymer composition                            | N<br>conter | I<br>∩t (%)       | S<br>conten | t (%) | Degree of<br>Derivatization<br>(%) <sup>a</sup> |    |  |
|-------------------------------------------------------|-------------|-------------------|-------------|-------|-------------------------------------------------|----|--|
|                                                       | theory      | exp               | theory      | exp   | Ν                                               | S  |  |
| PGMA <sub>28</sub> -PGlyMA <sub>25</sub>              | 0.17        | 0.23 <sup>b</sup> | 0.78        | 1.04  | -                                               | -  |  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>25</sub>        | 3.23        | 2.94              | 7.67        | 6.98  | 91                                              | 91 |  |
| PGMA <sub>28</sub> -PGlyMA <sub>40</sub>              | 0.13        | 0.16 <sup>b</sup> | 0.62        | 0.70  | -                                               | -  |  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>40</sub>        | 3.77        | 3.42              | 8.84        | 8.02  | 91                                              | 91 |  |
| PGMA <sub>28</sub> -PGlyMA <sub>80</sub>              | 0.09        | 0.06 <sup>b</sup> | 0.40        | 0.48  |                                                 |    |  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>80</sub>        | 4.40        | 1.89              | 10.20       | 4.68  | 43                                              | 46 |  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>80</sub> -50 °C | 4.40        | 3.86              | 10.20       | 9.13  | 88                                              | 90 |  |

<sup>a</sup> calculated using the equation: Degree of derivatization = (exp N or S content / theory N or S content) x 100, where the theoretical values assume quantitative reaction.  $P_{\text{Relevents}} = \frac{1}{2} \frac{1$ 

<sup>b</sup> Below the instrument detection limit of 0.3%.

**Table S4.** DLS diameters,  $D_z$ , polydispersities, PDI, and zeta potentials (ZP) obtained for dilute aqueousdispersions of PGMA28-PGlyMAn nano-objects originally prepared at 20% w/w solids and also for thecorresponding L-cysteine-derivatized PGMA28-P(Gly-cys)n nano-objects.

| Target polymer composition                            | D <sub>z</sub> (nm) | PDI  | ZP (mV)<br>at pH 7 |
|-------------------------------------------------------|---------------------|------|--------------------|
| PGMA <sub>28</sub> -PGlyMA <sub>25</sub>              | 18                  | 0.12 | -                  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>25</sub>        | 14                  | 0.36 | -                  |
| PGMA <sub>28</sub> -PGlyMA <sub>40</sub>              | 186                 | 0.42 | -4.11              |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>40</sub>        | 126                 | 0.28 | -21.1              |
| PGMA <sub>28</sub> -PGlyMA <sub>80</sub>              | 49                  | 0.03 | -                  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>80</sub>        | 59                  | 0.09 | -                  |
| PGMA <sub>28</sub> -P(GlyMA-cys) <sub>80</sub> -50 °C | 81                  | 0.10 | -30.1              |

**Table S5.** Structural parameters obtained from SAXS analysis of 1.0% w/w aqueous dispersions of PGMA<sub>28</sub>-PGIyMA<sub>n</sub> nano-objects originally prepared at 20% w/w solids and corresponding PGMA<sub>28</sub>-P(GlyMA-cys)<sub>n</sub> nano-objects following derivatization with L-cysteine, using Guassian coil,<sup>3</sup> sphere,<sup>1</sup> worm<sup>1</sup> or vesicle<sup>2</sup> models. Representative parameters are denoted as follows:  $V_{PGIyMA}$  is the volume of the PGIyMA block,  $\varphi$  is the volume fraction of the nano-object,  $R_s$  represents the volume-average radius of the spherical cores,  $R_w$  represents the cross-sectional radius of the worm cores,  $R_m$  represents the radius from the centre of the vesicle to the centre of the membrane,  $T_m$  is the mean thickness of the hydrophobic component of the vesicle membrane, and  $\sigma_y$  denotes the standard deviation of the relevant parameter ( $y = R_s, R_w, R_m$  or  $T_m$ ).  $R_g$  denotes the mean radius of gyration for the PGMA<sub>28</sub> stabilizer chains (or dissolved copolymer chains when fitting to the Gaussian coil model).  $D_s$  denotes the overall volume-average diameter of the spheres,  $D_w$  denotes the cross-sectional volume-average worm diameter,  $D_v$  denotes the overall volume-average diameter of the vesicles and  $D_z$  is the mean hydrodynamic diameter reported by DLS. From the Hayter-Penfold approximation,<sup>4</sup>  $R_{HP}$  is an interparticle correlation radius,  $f_{HP}$  is an effective volume fraction and Q denotes the particle charge (expressed in electrons). The volume of the PGMA<sub>28</sub> block,  $V_{PGMA}$ , used to fit the SAXS patterns was 5.69 nm<sup>3</sup> and  $x_{sol}$  was zero in all cases.

| Target copolymer composition                        | Scattering<br>model <sup>a</sup> | V <sub>PGlyMA</sub><br>(nm³) | Volume<br>fraction<br>(φ) | R <sub>s</sub> / σ <sub>Rs</sub><br>(nm) | R <sub>w</sub> / σ <sub>Rw</sub><br>(nm) | R <sub>m</sub> / σ <sub>Rm</sub><br>(nm) | T <sub>m</sub> / σ <sub>Tm</sub><br>(nm) | R <sub>g</sub><br>(nm) | D <sub>s</sub> , D <sub>w</sub> or<br>D <sub>v</sub> (nm) <sup>c</sup> | D <sub>z</sub><br>(nm) | R <sub>HP</sub><br>(nm) | f <sub>HP</sub> | Q<br>(e) |
|-----------------------------------------------------|----------------------------------|------------------------------|---------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------|------------------------------------------------------------------------|------------------------|-------------------------|-----------------|----------|
| G <sub>28</sub> -Gly <sub>25</sub>                  | S+bkg                            | 4.72                         | 0.0028                    | 3.96 / 0.77                              | -                                        | -                                        | -                                        | 1.68                   | 14.6                                                                   | 18                     | -                       | -               | -        |
| $G_{28}$ -(Gly-cys) <sub>25</sub>                   | GC,HP                            | 10.41 <sup>b</sup>           | 0.0030                    | -                                        | -                                        | -                                        | -                                        | 7.18                   | -                                                                      | 14                     | 22.2                    | 0.0610          | 1.7      |
| G <sub>28</sub> -Gly <sub>40</sub>                  | W                                | 7.55                         | 0.0096                    |                                          | 4.81 / 0.64                              |                                          | -                                        | 1.41                   | 15.3                                                                   | 13.4*                  |                         | -               | -        |
| $G_{28}\text{-}(Gly\text{-}cys)_{40}$               | P1 = W                           | 7.55                         | 0.0072                    | -                                        | 6.44 / 1.31                              | -                                        | -                                        | 1.23                   | 17.8                                                                   | 16.4*                  | -                       | -               | -        |
|                                                     | P2 = GC,HP                       | 13.24 <sup><i>b</i></sup>    | 0.0027                    | -                                        | -                                        | -                                        | -                                        | 1.52                   | -                                                                      | -                      | 2.46                    | 0.0042          | 2.0      |
| G <sub>28</sub> -Gly <sub>80</sub>                  | V+Unified<br>level               | 15.11                        | 0.0080                    | -                                        |                                          | 15.1 / 2.79                              | 7.46 / 1.38                              | 1.89                   | 45.3                                                                   | 49                     |                         | -               | -        |
| G <sub>28</sub> -(Gly-cys) <sub>80</sub> -<br>50 °C | V-HP                             | 15.11                        | 0.0072                    | -                                        | -                                        | 22.1 / 4.60                              | 9.74 / 2.29                              | 0.96                   | 57.8                                                                   | 81                     | 91.1                    | 0.2018          | 2.0      |

\*Worm cross-section not obtainable by DLS. Therefore, the worm cross-section is reported as determined by TEM

<sup>a</sup> Models used were; S = spherical micelle, W = worm, V = vesicle, GC = Gaussian coil, HP = Hayter-Penfold, where P1 and P2, denote different populations modelled.

<sup>b</sup> For the Gaussian coil model, the total molecular volume of the copolymer,  $V_{mol}$ , was used in the fitting parameters ( $V_{mol} = V_{PGMA} + V_{PGlyMA}$ ).

<sup>c</sup> When fitted using a spherical micelle model, the overall volume-average sphere diameter,  $D_s$ , was calculated using  $D_s = 2R_s + 4R_g$ . When fitted using a worm model, the volume-average cross-sectional worm diameter,  $D_w$ , was calculated using  $D_w = 2R_s + 4R_g$ . When fitted using a vesicle model, the overall volume-average vesicle diameter,  $D_v$ , was calculated using  $D_v = 2R_m + T_m + 2R_g$ .



**Figure S6.** *Postmortem* analysis of the PGMA<sub>48</sub>-PGlyMA<sub>100</sub> diblock copolymer spheres prepared at 10% w/w solids for both a laboratory-scale synthesis (red data) and the corresponding *in situ* SAXS experiment conducted using a stirrable reaction cell (blue data): (A) overlaid DMF GPC chromatograms, with the PGMA<sub>48</sub> precursor also shown as a reference (black curve), and (B) overlaid DLS traces.



**Figure S7.** SAXS pattern recorded for a 1.0% w/w aqueous dispersion of  $PGMA_{48}$ -PGlyMA<sub>100</sub> originally prepared during the *in situ* SAXS experiment at 10% w/w solids using the bespoke stirrable reaction cell. The experimental data are denoted by open circles while the solid black line indicates the data fit obtained when using a spherical micelle model.



**Figure S8.** SAXS pattern recorded for the concentrated aqueous dispersion of PGMA<sub>48</sub>-PGlyMA<sub>100</sub> prepared during the *in situ* SAXS experiment at 10% w/w solids using the bespoke stirrable reaction cell. Data were collected immediately following the polymerization. The experimental data are denoted by red open circles while the solid black line indicates the data fit obtained when using a spherical micelle model with a hard-sphere interaction structure factor incorporated due to the higher concentration of dispersed nano-objects.

**Table S6.** Structural parameters obtained from SAXS analysis of aqueous dispersions of PGMA<sub>48</sub>-PGlyMA<sub>100</sub> nano-objects originally prepared at 10% w/w solids during an *in situ* SAXS experiment using a stirrable reaction cell; the final reaction mixture at 10% w/w and also after dilution to 1.0% w/w, fitted using an appropriate spherical micelle model.<sup>1</sup> Representative parameters are denoted as follows:  $\varphi$  is the volume fraction of the nano-object,  $R_s$  represents the volume-average radius of the spherical core,  $\sigma_{Rs}$  denotes the standard deviation of  $R_s$ .  $R_g$  is the mean radius of gyration for the PGMA<sub>48</sub> stabilizer chains and  $D_s$  denotes the overall volume-average diameter of the spheres. From the hard-sphere interaction structure factor<sup>5</sup> based on the Percus-Yevick approximation,  $R_{PY}$  is the interaction radius and  $f_{PY}$  is the hard-sphere volume fraction. The volumes of the PGMA<sub>48</sub> block,  $V_{PGMA}$ , and PGlyMA<sub>100</sub> stabilizer block,  $V_{PGIVAA}$ , used to fit the SAXS patterns were 9.75 nm<sup>3</sup> and 18.9 nm<sup>3</sup> respectively, and  $x_{sol}$  was zero in both cases.

| Target copolymer composition             | Copolymer concentration<br>for analysis (% w/w) | Scattering model                        | Volume fraction<br>(φ) | R <sub>s</sub> / σ <sub>Rs</sub><br>(nm) | R <sub>g</sub><br>(nm) | D <sub>s</sub><br>(nm) ª | R <sub>PY</sub><br>(nm) | f <sub>PY</sub> | background |
|------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------|------------------------------------------|------------------------|--------------------------|-------------------------|-----------------|------------|
| PGMA <sub>48</sub> -GlyMA <sub>100</sub> | 1.0                                             | Spherical micelle                       | 0.000341               | 7.9 / 0.96                               | 1.83                   | 23.1                     | -                       | -               | 0.00141    |
| PGMA <sub>48</sub> -GlyMA <sub>100</sub> | 10                                              | Spherical micelle<br>+ structure factor | 0.0255                 | 7.5 / 0.73                               | 2.08                   | 23.3                     | 10.5                    | 0.095           | -          |

<sup>*a*</sup> The overall volume-average sphere diameter,  $D_s$ , was calculated using  $D_s = 2R_s + 4R_g$ .

## SAXS Models

In general, the intensity of X-rays scattered by a dispersion of nano-objects [as represented by the scattering cross-section per unit sample volume,  $\frac{d\Sigma}{d\Omega}(q)$ ] can be expressed as:

$$\frac{d\Sigma}{d\Omega}(q) = NS(q) \int_{0}^{\infty} \dots \int_{0}^{\infty} F(q, r_{1,\dots,r_{k}})^{2} \Psi(r_{1,\dots,r_{k}}) dr_{1,\dots,d}r_{k}$$
(S1)

where  $F(q,r_1,...,r_k)$  is the form factor,  $r_1,...,r_k$  is a set of *k* parameters describing the structural morphology,  $\Psi(r_1,...,r_k)$  is the distribution function, S(q) is the structure factor and *N* is the number density of nano-objects per unit volume expressed as:

$$N = \frac{\varphi}{\int_{0}^{\infty} \dots \int_{0}^{\infty} V(r_{1}, \dots, r_{k}) \Psi(r_{1}, \dots, r_{k}) dr_{1}, \dots, dr_{k}}$$
(S2)

where  $V(r_1,...,r_k)$  is the volume of the nano-object and  $\varphi$  is its volume fraction within the dispersion. Unless stated otherwise, it is assumed that S(q) = 1 at sufficiently low copolymer concentrations (e.g. 1.0% w/w).

#### Gaussian chain model

Generally, the scattering cross-section per unit sample volume for an individual Gaussian polymer chain can be expressed as:

$$\frac{d\Sigma}{d\Omega}(q) = \varphi(\Delta\xi)^2 V_{mol} F_{mol}(q)$$
(S3)

where  $V_{mol}$  is the total molecular volume and  $\Delta\xi$  is the excess scattering length density of the copolymer [ $\Delta\xi = \xi_{PGMA - PGlyMA} - \xi_{H_20}$ ]. The scattering length density of water is  $\xi_{H_20} = 9.42 \text{ x}$  10<sup>10</sup> cm<sup>-2</sup>, while  $\xi_{PGMA - PGlyMA}$  is the mean scattering length density of the copolymer, which is calculated as:

$$\xi_{PGMA - PGlyMA} = \xi_{PGMA} v_{PGMA} + \xi_{PGlyMA} v_{PGlyMA}$$
(S4)

where  $v_{PGMA}$  and  $v_{PGlyMA}$  represent the respective volume fractions of the PGMA and PGlyMA blocks in the copolymer, and  $\xi_{PGMA}$  and  $\xi_{PGIyMA}$  are the respective scattering length densities of PGMA (11.94 x 10<sup>10</sup> cm<sup>-2</sup>) and PGlyMA (11.34 x 10<sup>10</sup> cm<sup>-2</sup>). The respective volume fractions, v, were calculated using:

$$v = \frac{V}{V_{mol}}$$
(S5)

where V is the volume of the PGMA block ( $V_{PGMA}$ ) or PGlyMA block ( $V_{PGlyMA}$ ) respectively, and  $V_{mol}$  is the total molecular volume of the copolymer ( $V_{mol} = V_{PGMA} + V_{PGlyMA}$ ). The volume of

 $V = \frac{M_{n, pol}}{N_A \rho}$ , where the solid-state density of a PGlyMA each block was obtained using homopolymer was determined by helium pycnometry ( $\rho_{PGlyMA} = 1.25 \text{ g cm}^{-3}$ ) and the density of PGMA,  $\rho_{PGMA}$  was taken to be 1.31 g cm<sup>-3</sup>.<sup>7</sup>  $M_{n, pol}$  corresponds to the number-average molecular weight of each block as determined by end-group analysis using <sup>1</sup>H NMR spectroscopy.

The generalized form factor for a Gaussian polymer chain is given by<sup>3</sup>:

$$F_{mol}(q) = \left[\frac{1}{\nu U^{1/(2\nu)}} \gamma \left(\frac{1}{2\nu'} U\right) - \frac{1}{\nu U^{1/\nu}} \left(\frac{1}{\nu'} U\right)\right]$$
(S6)

 $\gamma(s,x) = \int_{0}^{x} t^{s-1} \exp((-t)) dt$ and U is the where the lower incomplete gamma function is modified variable:

$$U = (2\nu + 1)(2\nu + 2)\frac{q^2 R_{g, cop}}{6}$$
(S7)

Here, v is the extended volume parameter (here theta conditions are assumed and thus v is fixed at 0.50) and  $R_{g,cop}$  is the radius of gyration of the copolymer chain.

#### Spherical micelle model

The spherical micelle form factor for Equation S1 is given by<sup>1</sup>:

$$F_{s_{mic}}(q) = N_s^2 \beta_s^2 A_s^2(q, R_s) + N_s \beta_c^2 F_c(q, R_g) + N_s(N_s - 1)\beta_c^2 A_c^2(q) + 2N_s^2 \beta_s \beta_c A_s(q$$
(S8)

where  $R_s$  is the volume-average sphere core radius and  $R_g$  is the radius of gyration of the coronal steric stabilizer block (in this case, PGMA<sub>28</sub>). The X-ray scattering length contrasts for the core and corona blocks are given by  $\beta_s = V_s(\xi_s - \xi_{sol})$  and  $\beta_c = V_c(\xi_c - \xi_{sol})$  respectively. Here,  $\xi_s$ ,  $\xi_c$  and  $\xi_{sol}$  are the X-ray scattering length densities of the core block ( $\xi_{PGlyMA}$  = 11.34 x 10<sup>10</sup> cm<sup>-2</sup>), corona block ( $\xi_{PGMA}$  = 11.94 x 10<sup>10</sup> cm<sup>-2</sup>) and solvent (water) ( $\xi_{sol}$  = 9.42 x 10<sup>10</sup> cm<sup>-2</sup>) <sup>2</sup>), respectively.  $V_s$  and  $V_c$  are the volumes of the core block ( $V_{PGlyMA}$ ) and the corona block (  $V_{PGMA}$ ) respectively. These volumes were obtained as described previously for the Gaussian coil model. The sphere form factor amplitude is used for the amplitude of the core self-term:

$$A_c(q,R_s) = \Phi(qR_s)exp\left[\frac{1}{2}\right]$$
(S9)

where

 $\Phi(qR_s) = \frac{3[\sin(qR_s) - qR_s cos[m](qR_s)]}{(qR_s)^3}$ . A sigmoidal interface between the two blocks was assumed for the spherical micelle form factor (Equation S8). This is described by the exponent term with a width  $\sigma$  accounting for a decaying scattering length density at the micellar interface. This  $\sigma$  value was fixed at 2.2 during fitting.

The form factor amplitude of the spherical micelle corona is:

$$A_{c}(q) = \frac{\int_{R_{s}}^{R_{s}+2s} \mu_{c}(r) \frac{\sin[m](qr)}{qr} r^{2} dr}{\int_{R_{s}}^{R_{s}+2s} \mu_{c}(r) r^{2} dr} exp\left(-\frac{q^{2}\sigma^{2}}{2}\right)$$
(S10)

The radial profile,  $\mu_c(r)$ , can be expressed by a linear combination of two cubic b splines, with two fitting parameters s and a corresponding to the width of the profile and the weight coefficient respectively. This information can be found elsewhere,<sup>8,9</sup> as can the approximate integrated form of Equation S10. The self-correlation term for the coronal block is given by the Debye function:

$$F_{c}(q,R_{g}) = \frac{2\left[\exp\left(-q^{2}R_{g}^{2}\right) - 1 + q^{2}R_{g}^{2}\right]}{q^{4}R_{g}^{4}}$$
(S11)

where  $R_g$  is the radius of gyration of the PGMA coronal block. The aggregation number,  $N_s$ , of the spherical micelle is given by:

$$N_{s} = (1 - x_{sol}) \frac{\frac{4}{3} \pi R_{s}^{3}}{V_{s}}$$
(S12)

where  $x_{sol}$  is the volume fraction of solvent within the PGlyMA micelle cores.

An effective structure factor proposed for interacting spherical micelles<sup>5</sup> has been used in Equation S1:

$$S_{s}(q) = 1 + \frac{A_{s_{mic}}^{av}(q)^{2} [S_{PY}(q, R_{PY}, f_{PY}) - 1]}{F_{s_{mic}}(q)}$$
(S13)

Herein the form factor of the average radial scattering length density distribution of micelles is used such that  $A_{s_{mic}}^{av}(q) = N_s [\beta_s A_s(q,R_s) + \beta_c A_c(q)]$  and  $S_{PY}(q,R_{PY},f_{PY})$  is a structure factor based on the Percus-Yevick approximation for hard spheres,<sup>6</sup> where  $R_{PY}$  is the interaction radius and  $f_{PY}$  is the hard-sphere volume fraction. A polydispersity for one parameter ( $R_s$ ) is assumed for the micelle model, which is described by a Gaussian distribution. Thus, the polydispersity function in Equation S1 can be represented as:

$$\Psi(r_1) = \frac{1}{\sqrt{2\pi\sigma_{Rs}^2}} exp\left(-\frac{(r_1 - R_s)^2}{2\sigma_{Rs}^2}\right)$$
(S14)

where  $\sigma_{Rs}$  is the standard deviation for  $R_s$ . In accordance with Equation S2, the number density per unit volume for the micelle model is expressed as:

$$N = \frac{\varphi}{\int_{0}^{\infty} V(r_1)\Psi(r_1)dr_1}$$
(S15)

where  $\varphi$  is the total volume fraction of copolymer in the spherical micelles and  $V(r_1)$  is the total volume of copolymer within a spherical micelle  $[V(r_1) = (V_s + V_c)N_s(r_1)]$ .

#### Worm-like micelle model

The worm-like micelle form factor for Equation S1 is given by:

$$F_{w\_mic}(q) = N_w^2 \beta_s^2 F_{sw}(q) + N_w \beta_c^2 F_c(q, R_g) + N_w (N_w - 1) \beta_c^2 S_{cc}(q) + 2N_w^2 \beta_s \beta_c S_{sc}($$
(S16)

where all the parameters are the same as those described in the spherical micelle model (Equation S8), unless stated otherwise.

The self-correlation term for the worm core cross-sectional volume-average radius  $R_w$  is:

$$F_{sw}(q) = F_{worm}(q, L_w, b_w) A_{CSworm}^2(q, R_{sw})$$
(S17)

where

$$A_{CSworm}^{2}(q,R_{sw}) = \left[2\frac{J_{1}(qR_{sw})}{qR_{sw}}\right]^{2}$$
(S18)

and  $J_1$  is the first-order Bessel function of the first kind, and a form factor  $F_{worm}(q,L_w,b_w)$  for selfavoiding semi-flexible chains represents the worm-like micelles, where  $b_w$  is the Kuhn length and  $L_w$  is the mean contour length. A complete expression for the chain form factor can be found elsewhere.<sup>10</sup>

The mean aggregation number of the worm-like micelle,  $N_w$ , is given by:

$$N_{w} = (1 - x_{sol}) \frac{\pi R_{sw}^{2} L_{w}}{V_{s}}$$
(S19)

where  $x_{sol}$  is the volume fraction of solvent within the worm-like micelle cores. The possible presence of semi-spherical caps at both ends of each worm is neglected in this form factor.

A polydispersity for one parameter  $({}^{R_{w}})$  is assumed for the micelle model, which is described by a Gaussian distribution. Thus, the polydispersity function in Equation S1 can be represented as:

$$\Psi(r_1) = \frac{1}{\sqrt{2\pi\sigma_{R_w}^2}} exp\left(-\frac{(r_1 - R_w)^2}{2\sigma_{R_w}^2}\right)$$
(S20)

where  $\sigma_{R_w}$  is the standard deviation for  $R_w$ . In accordance with Equation S2, the number density per unit volume for the worm-like micelle model is expressed as:

$$N = \frac{\varphi}{\int_{0}^{\infty} V(r_1)\Psi(r_1)dr_1}$$
(S21)

where  $\varphi$  is the total volume fraction of copolymer in the worm-like micelles and  $V(r_1)$  is the total volume of copolymer in a worm-like micelle  $[V(r_1) = (V_s + V_c)N_w(r_1)]$ .

#### Vesicle model

The vesicle form factor in Equation S1 is expressed as<sup>2</sup>:

$$F_{ves}(q) = N_v^2 \beta_m^2 A_m^2(q) + N_v \beta_{vc}^2 F_c(q, R_q) + N_v (N_v - 1) \beta_{vc}^2 A_{vc}^2(q) + 2N_v^2 \beta_m \beta_{vc} A$$
(S22)

where all the parameters are the same as in the spherical micelle model (see Equation S8) unless stated otherwise.

The amplitude of the membrane self-term is:

$$A_m(q) = \frac{V_{out}\varphi(qR_{out}) - V_{in}\varphi(qR_{in})}{V_{out} - V_{in}}exp\left(-\frac{q^2\sigma_{in}^2}{2}\right)$$
(S23)

where  $R_{in} = R_m - \frac{1}{2}T_m$  is the inner radius of the membrane,  $R_{out} = R_m + \frac{1}{2}T_m$  is the outer radius of the membrane ( $R_m$  is the radius from the centre of the vesicle to the centre of the membrane),  $V_{in} = \frac{4}{3}\pi R_{in}^3$  and  $V_{out} = \frac{4}{3}\pi R_{out}^3$ . It should be noted that Equation S22 differs subtly from the original work in which it was first described.<sup>2</sup> The exponent term in Equation S23 represents a sigmoidal interface between the blocks, with a width  $\sigma_{in}$  accounting for a decaying scattering length density at the membrane surface. The value of  $\sigma_{in}$  was fixed at 2.5 during fitting. The mean vesicle aggregation number,  $N_v$ , is given by:

$$N_{v} = (1 - x_{sol}) \frac{V_{out} - V_{in}}{V_{m}}$$
(S24)

where  $x_{sol}$  is the volume fraction of solvent within the vesicle membrane. Assuming that there is no penetration of the hydrophilic coronal blocks into the hydrophobic membrane, the amplitude of the vesicle corona self-term is expressed as:

$$A_{vc}(q) = \Psi(qR_g) \frac{1}{2} \left[ \frac{\sin[q(R_{out} + R_g)]}{q(R_{out} + R_g)} + \frac{\sin[\omega][q(R_{in} - R_g)]}{q(R_{in} - R_g)} \right]$$
(S25)

where the term outside the square brackets is the factor amplitude of the corona block polymer chain such that:

$$\Psi(qR_g) = \frac{1 - exp[m](-qR_g)}{(qR_g)^2}$$
(S26)

For the vesicle model, it was assumed that two parameters are polydisperse: the radius from the centre of the vesicles to the centre of the membrane and the membrane thickness (denoted  $R_m$  and  $T_m$ , respectively). Each parameter is considered to have a Gaussian distribution of values, so the polydispersity function in Equation S1 can be expressed in each case as:

$$\Psi(r_1 r_2) = \frac{1}{\sqrt{2\pi\sigma_{Rs}^2}} exp\left(-\frac{(r_1 - R_m)^2}{2\sigma_{Rm}^2}\right) \frac{1}{\sqrt{2\pi\sigma_{Tm}^2}} exp\left(-\frac{(r_1 - T_m)^2}{2\sigma_{Tm}^2}\right)$$
(S27)

where  $\sigma_{Rm}$  and  $\sigma_{Tm}$  are the standard deviations for  $R_m$  and  $T_m$ , respectively. Following Equation S2, the number density per unit volume for the vesicle model is expressed as:

$$N = \frac{\varphi}{\int_{0}^{\infty} \int_{0}^{\infty} V(r_{1}, r_{2}) \Psi(r_{1}, r_{2}) dr_{1} dr_{2}}$$
(S28)

where  $\varphi$  is the total volume fraction of copolymer in the vesicles and  $V(r_1, r_2)$  is the total volume of copolymers in a vesicle  $[V(r_1, r_2) = (V_m + V_{vc})N_v(r_1, r_2)]$ .

#### Hayter-Penfold Approximation

An effective structure factor expression for interactions between charged spheres in a dielectric medium<sup>4,11</sup> was used in Equation S1:

$$S(q) = S_{HP}(q, R_{HP}, f_{HP}, M, T, \varepsilon, Q)$$
(S29)

where  $R_{HP}$  is an interparticle correlation radius,  $f_{HP}$  is an effective volume fraction, M is the ionic strength of the aqueous solution, T is the absolute temperature,  $\varepsilon$  is the solvent dielectric constant, and Q is the particle charge expressed in electrons.

Programming tools within the Irena SAS Igor Pro macros<sup>12</sup> were used to implement the scattering models.

### References

- (1) Pedersen, J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. *J. Appl. Crystallogr.* **2000**, *33*, 637–640.
- Bang, J.; Jain, S. M.; Li, Z. B.; Lodge, T. P.; Pedersen, J. S.; Kesselman, E.; Talmon,
   Y. Sphere, Cylinder, and Vesicle Nanoaggregates in Poly (Styrene-b-Isoprene)
   Diblock Copolymer Solutions. *Macromolecules* 2006, 39, 1199–1208.
- (3) Hammouda, B. Probing Nanoscale Structures The SANS Toolbox; National Institute of Standards and Technology: Gaithersburg, 2008.
- Hayter, J. B.; Penfold, J. An Analytic Structure Factor for Macroion Solutions. *Mol. Phys.* **1981**, *42*, 109–118.
- Pedersen, J. S. Structure Factor Effects in Small-Angle Scattering from Block
   Copolymer Micelles and Star Polymers. *J. Chem. Phys.* 2001, *114*, 2839–2846.
- Kinning, D. J.; Thomas, E. L. Hard-Sphere Interactions Between Spherical Domains in Diblock Copolymers. *Macromolecules* **1984**, *17*, 1712–1718.
- Mable, C. J.; Warren, N. J.; Thompson, K. L.; Mykhaylyk, O. O.; Armes, S. P.Framboidal ABC Triblock Copolymer Vesicles: A New Class of Efficient Pickering

Emulsifier. Chem. Sci. 2015, 6, 6179-6188.

- Pedersen, J. S.; Gerstenberg, M. C. The Structure of P85 Pluronic Block Copolymer Micelles Determined by Small-Angle Neutron Scattering. *Colloids Surfaces A Physicochem. Eng. Asp.* 2003, *213*, 175–187.
- (9) Pedersen, J. S.; Svaneborg, C.; Almdal, K.; Hamley, I. W.; Young, R. N. A Small-Angle Neutron and X-Ray Contrast Variation Scattering Study of the Structure of Block Copolymer Micelles: Corona Shape and Excluded Volume Interactions. *Macromolecules* 2003, *36*, 416–433.
- (10) Pedersen, J. S.; Schurtenberger, P. Scattering Functions of Semiflexible Polymers with and without Excluded Volume Effects. *Macromolecules* **1996**, *29*, 7602–7612.
- Hansen, J. P.; Hayter, J. B. A Rescaled Msa Structure Factor for Dilute Charged Colloidal Dispersions. *Mol. Phys.* **1982**, *46*, 651–656.
- (12) Ilavsky, J.; Jemian, P. R. Irena: Tool Suite for Modeling and Analysis of Small-Angle Scattering. *J. Appl. Crystallogr.* 2009, *42*, 347–353.