Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Catalyst Free Removal of Trithiocarbonate RAFT CTAs from Poly(vinylpyridine)s Using Tris(trimethylsilyl)silane and Light

Brandon A. Fultz, Drake Beery, Brianna M. Coia, Kenneth Hanson, and Justin G. Kennemur*

Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, United States.

Table of Contents:

I. EXPERIMENTAL

II.

Materials		p. S2			
Characterizatio	ns	p. S3			
Synthesis		p. S4			
ADDITIONAL	L DATA AND FIGURES	p. S6			
Figure S1.	¹ H NMR of CDPA.				
Figure S2.	UV-VIS Spectrum of CDPA.				
Figure S5.	Steeled II NMD of DMMA TTC and DMMA II				
Figure S4.	Stacked 'H INIVIK OF PIVIVIA-11C and PIVIVIA-H.				
Figure S5.	'H NMK OI PMMA-H with olefin region inset SEC trace of PMMA-11C.				
Figure S7	¹ H NMR of PMMA ₋ H nost RAFT removal using EPHP				
Figure S8	SEC trace of PMMA-TTC and PMMA-H after RAFT removal using EPHP				
Figure S9	Image of P2VP-TTC and P2VP-H before and after RAFT removal using UV				
Figure S10.	Stacked ¹ H NMR of PMMA-TTC and PMMA-H.	501			
Figure S11.	Kinetic evaluation of PS-TTC RAFT removal using TTMSS.				
Figure S12.	Stacked ¹ H NMR of PS-TTC and PS-H.				
Figure S13.	SEC trace of PS-TTC.				
Figure S14.	Kinetic evaluation of P2VP-TTC RAFT removal using EPHP.				
Figure S15.	¹ H NMR of P2VP-H post RAFT removal using EPHP.				
Figure S16.	¹ H NMR of P4VP-H post RAFT removal using EPHP.				
Figure S17.	Kinetic comparison of RAFT end group removal using TTMSS with PM TTC, P2VP-TTC, P4VP-TTC and PS-TTC	MMA-			
Figure S18.	TGA thermogram of PMMA-TTC and PMMA-H.				
Figure S19.	TGA thermogram of P2VP-TTC and P2VP-H				
Figure S20.	SEC trace overlay of PS-TTC and PS-H under varying concertation and solvent conditions.	1			
Figure S21.	SEC trace overlay of P2VP-TTC and P2VP-H using 30:1 TTMSS to RA and UV.	AFT ratio			
Figure S22.	Image of Blue light LED apparatus used for RAFT removal.				
Figure S23.	Kinetic evaluation of P2VP-TTC RAFT removal using TTMSS and blu	e light.			
Figure S24.	SEC trace overlay of P2VP-TTC and P2VP-H using UV versus blue lig	,ht.			

Figure S25.	¹ H NMR integration ratios of PMMA-TTC used for end group analysis.				
Figure S26.	DSC thermogram of PMMA-TTC.				
Figure S27.	SEC trace of PMMA-TTC.				
Figure S28.	¹ H NMR integration ratios of P2VP-TTC used for end group analysis.				
Figure S29.	DSC thermogram of P2VP-TTC.				
Figure S30.	SEC trace of P2VP-TTC.				
Figure S31.	¹ H NMR integration ratios of P4VP-TTC used for end group analysis.				
Figure S32.	DSC thermogram of P4VP-TTC.				
Figure S33.	¹ H NMR integration ratios of PS-TTC used for end group analysis.				
Figure S34.	DSC thermogram of PS-TTC.				
Figure S35.	SEC trace of PS-TTC.				
Figure S36.	¹ H NMR integration ratios of PMMA-TTC used to showing TTMSS				
	biproduct.				
Figure S37.	Absorption spectra as a function of [TTC] for PMMA-TTC				
Figure S38.	Calibration curve of UV-Vis absorption as a function of [TTC] for PMMA-TTC				
Figure S39.	Absorption spectra as a function of [TTC] for PS-TTC				
Figure S40.	Calibration curve of UV-Vis absorption as a function of [TTC] for PS-TTC				
Figure S41.	Absorption spectra as a function of [TTC] for P2VP-TTC				
Figure S42.	Calibration curve of UV-Vis absorption as a function of [TTC] for P2VP-TTC				
Figure S43.	Absorption spectra as a function of [TTC] for P4VP-TTC				
Figure S44.	Calibration curve of UV-Vis absorption as a function of [TTC] for P4VP-TTC				
Figure S45.	UV-Vis overlay of each TTC functionalized polymer showing similar λ_{max} (~310 nm) for the π to π^* transition.				
Figure S46.	UV-Vis overlay for TTC functionalized polymers with zoomed inset showing n- π^* transition.				
Table S1.	Tabulation of molar absorptivity and λ_{max} values for each TTC functionalized polymer.				
Figure S47.	Logarithmic plot of [CTA] versus time for photoreductions using EPHP.				

III. REFERENCES

p. S38

I. Experimental Procedures

Materials: All chemicals were used as received unless otherwise noted. Methyl methacrylate (MMA) (99%) and styrene (>99.9%) (inhibitor removed via passage through basic alumina prior to use), azobisisobutyronitrile (AIBN) recrystallized from methanol, 1-ethylpiperdine hypophosphite (EPHP, 95%), *N*,*N*-dimethylacetamide (DMAC) (>99.8%), hexanes (64% n-hexanes), 1,4-dioxane, toluene (PhMe), and methanol (MeOH) were purchased from Millipore-Sigma. 2-Vinyl pyridine (2VP, 97%) and 4-vinyl pyridine (4VP, 95%), distilled under reduced pressure before use, were purchased from Alfa-Aesar. Aluminum oxide (basic Brockman grade I) was purchased from Beantown chemical. Tristrimethylsilylsilane (TTMSS, 97%) was obtained from Oakwood Chemical. Tetrahydrofuran (THF)

(inhibitor free) and *N*,*N*-dimethylformamide (DMF) were obtained from an SG Waters glass contour solvent purification system that was packed with neutral alumina and the solvents were passed through a 2 µm filter prior to being dispensed. 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid (CDPA) was synthesized as previously described (Figure S1).^{1,2} UV-light was emitted via 4 x 9W 365 nm bulbs (1.0 mW/cm² at 2.5 cm) installed in a readily available 36 W "MelodySusie" nail curing station. Blue light (452 nm) was generated using a WenTop® Waterproof SMD 5050 light strip containing 50 blue LEDs lining a 250 mL glass beaker (Figure S22). The measured intensity of a cluster of 5 diodes was 0.3 mW/cm² at 0.5 cm.

Characterizations: ¹H NMR experiments were conducted on a Bruker Advance III 400 MHz spectrometer in the FSU Department of Chemistry and Biochemistry NMR Laboratory. Number average molar mass (M_n) and dispersity (Đ) of polymer samples were determined by size exclusion chromatography (SEC) on an Agilent–Wyatt combination triple detection system (THF mobile phase) containing 3 successive Agilent PLgel Mixed-C columns, an Agilent 1260 infinity series pump, degasser, autosampler, and thermostatted column chamber. The Wyatt triple detection unit hosts a mini-Dawn TREOS 3-angle light scattering detector, Optilab TrEX refractive index detector, and a Viscostar II differential viscometer. Conventional column calibration (CCC) with 10-point polystyrene (PS) standards ranging from (1800 kDa to 2 kDa) was used. Thermogravimetric analysis (TGA) was performed on a TA instruments TGA 550 by heating samples at a rate of 5 °C/min under Ar (40 mL/min flow rate) using a platinum TGA pan. Differential scanning calorimetry (DSC) analysis was performed on a TA Instruments Model Q2000 with a model RCS90 refrigerated cooling system. Samples were cycled between 25 °C and 150 °C under N₂ (40 mL/min flow rate) at a rate of 10 °C/min. Emission spectra of the blue LEDs were recorded at room temperature using an Edinburgh FLS980 fluorescence spectrometer. An intensity meter (Ophir Vega 7Z01560) with a high sensitivity power sensor (Ophir Vega 3A-FS 7Z02628) was used to measure excitation source intensities. Ultravioletvisible (UV-vis) spectroscopy was performed on an Agilent 8453 UV-visible photodiode array spectrophotometer. Solution absorption spectra were obtained after baseline subtraction using a quartz (1 cm \times 1 cm) cuvette filled with the blank solvent. Reaction aliquots (100 μ L) were taken periodically and diluted with the reaction solvent to achieve an absorbance between 2 and 2.5 O.D. at t = 0. The dilution of each subsequent aliquot during the reaction was kept constant. Absorbance values at 310 nm were plotted and $t_{1/2}$ values are reported as the time when the absorbance reached half its initial value at t = 0.

Synthesis:

Poly(methyl methacrylate) - (PMMA-TCC)

RAFT polymerization was carried out by combining MMA (8.0 g, 80 mmol), CDPA (322 mg, 0.80 mmol) and AIBN (13 mg, 0.08 mmol) [100:1:0.1, respectively] with 4.8 mL of toluene in a Schlenk flask equipped with a polytetrafluoroethylene (PTFE) stir bar. Contents were degassed by three freeze-pump-thaw cycles prior to heating at 70 °C for 7.5 h. The reaction was then cooled in an ice bath and quenched with air. Following additional dilution in THF, the polymer was collected by precipitation into a 10-fold excess of MeOH at 0 °C and filtering. The dissolution/precipitation was repeated twice more and the final collected pale yellow solids were dried at 50 °C under vacuum for 12 h. Yield (4.1 g, 51%), $M_{n,NMR} = 5.9$ kg mol⁻¹ (determined by ¹H NMR end group analysis) (Figure S25), $M_{n,SEC} = 6.1$ kg mol⁻¹ and $\tilde{D} = 1.08$ (determined by SEC analysis) (Figure S27), $T_{g} = 118$ °C (Figure S26).

Poly(2-vinylpyridine) – (P2VP-TTC)

RAFT polymerization was carried out by combining 2VP (8.0 g, 76 mmol), CDPA (307 mg, 0.76 mmol) and AIBN (25 mg, 0.15 mmol) [100:1:0.2, respectively] with 4.5 mL of 1,4-dioxane in a Schlenk flask equipped with a PTFE stir bar. Contents were degassed by three freeze-pump-thaw cycles prior to heating at 70 °C for 15.5 h. The reaction was then cooled in an ice bath and quenched with air. Following additional dilution in THF, the polymer was collected by precipitation into a 10-fold excess of hexanes at 23 °C and filtering. The dissolution/precipitation was repeated twice more and the final collected pale orange solids were dried at 50 °C under vacuum for 12 h. Yield (6.30 g, 79%), $M_{n,NMR}$ = 8.3 kg mol⁻¹ (determined by ¹H NMR end group analysis) (Figure S28), $M_{n,SEC}$ = 8.5 kg mol⁻¹ and Đ =1.08 (determined by SEC analysis) (Figure S30), T_g = 91 °C (Figure S29).

Poly(4-vinylpyridine) – (P2VP-TTC)

RAFT polymerization was carried out by combining 4VP (8.0 g, 76 mmol), CDPA (304 mg, 0.75 mmol) and AIBN (25 mg, 0.15 mmol) [100:1:0.2, respectively] with 4.5 mL of DMF in a Schlenk flask equipped with a PTFE stir bar. Contents were degassed by three freeze-pump-thaw cycles prior to heating at 70 °C for 16 h. The reaction was then cooled in an ice bath and quenched with air. Following additional dilution in THF, the polymer was collected by precipitation into a 10-fold excess of hexanes at 23 °C and filtering. The dissolution/precipitation was repeated twice more and the final collected pale orange solids were dried at 50 °C under vacuum for 12 h. Yield (5.74 g, 72%), $M_{n,NMR}$ = 7.6 kg

mol⁻¹ (determined by ¹H NMR end group analysis) (Figure S31), $T_g = 137$ °C (Figure S32). P4VP was insoluble in THF and unable to be analyzed by SEC.

Polystyrene – (PS-TTC)

RAFT polymerization was carried out in bulk out by combining styrene (10.0 g, 96 mmol), CDPA (194 mg, 0.48 mmol) and AIBN (16 mg, 0.10 mmol) [100:1:0.2, respectively] in a Schlenk flask equipped with a PTFE stir bar. Contents were degassed by three freeze-pump-thaw cycles prior to heating at 80 °C for 9 h. The reaction was then cooled in an ice bath and quenched with air. Following additional dilution in toluene, the polymer was collected by precipitation into a 10-fold excess of MeOH at 23 °C and filtering. The dissolution/precipitation was repeated twice more and the final collected bright yellow solids were dried at 50 °C under vacuum for 12 h. Yield (4.01 g, 40%), $M_{n,NMR}$ = 7.8 kg mol⁻¹ (determined by ¹H NMR end group analysis) (Figure S33), $M_{n,SEC}$ = 7.8 kg mol⁻¹ and \oplus =1.10 (determined by SEC analysis) (Figure S35), T_{g} = 98 °C (Figure S34).

General procedure for photoinduced removal of TTC end groups using TTMSS.

PMMA-TTC (0.30 g, 0.05 mmol TTC) and TTMSS (183 mg, 0.75 mmol) (15 mol equiv. to TTC) were dissolved in 8.9 mL THF in a 20 mL scintillation vial along with a PTFE stir bar and capped with a rubber septa. The homogenous yellow solution was sparged with Ar for 20 min before irradiating with UV light (1.0 mW/cm²) at a distance of 2.5 cm from the bulb. The temperature reached 30 ± 2 °C at this distance. For kinetic studies, aliquots were taken periodically using a syringe and ensuring the reaction solution remains under inert atmosphere. Once reaction was complete, vials were opened to atmosphere and concentrated by rotary evaporation before triplicate precipitation (MeOH) / redissolution (hexanes/THF 10:1 v/v, respectively) to remove non-polar TTMSS impurities. The collected colorless solid was dried *en vacuo* at 50 °C overnight. Left over TTMSS biproduct calculated to be approximately 2.5% of polymer mass determined using ¹H NMR integration ratios (Figure S36)

II. ADDITIONAL DATA AND FIGURES.

Figure S1. ¹H NMR (CDCl₃, 25 °C) of 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid (CDPA) RAFT CTA.

Figure S2. Absorption Spectra (CHCl₃, 23 °C) of 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid (CDPA) RAFT CTA.

Figure S3. Removal of trithiocarbonate end group functionality from **PMMA-TTC** was complete in 1 h using a 15:1 ratio TTMSS:TTC, respectively, in THF at 5.5 mM concentration relative to TTC and 365 nm light. a) Reaction scheme for the photoinduced removal of RAFT CTA using TTMSS and UV-light. b) Normalized absorbance vs time plot for the reaction. c) UV-Vis absorption at different time intervals. d) Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) before (black, solid) and after (red, dashed) the reaction. e) ¹H NMR stacked spectra of NMR region associated with the dodecyl methylene directly neighboring the TTC before (top) and after (bottom) the reaction.

Figure S4. Stacked ¹H NMR (CDCl₃, 23 °C) of **PMMA-TTC** (top) before end group removal and **PMMA-H** (bottom) after end group removal using TTMSS.

Figure S5. ¹H NMR (CDCl₃, 23 °C) of **PMMA-TTC** after end group removal using TTMSS emphasizing the olefin region to show that little to no disproportionation occurred.

Figure S6. Absorption spectra over time for a) **PMMA-TTC**, b) **P4VP-TTC**, and c) **P2VP-TTC** under 365 nm irradiation (15:1 ratio EPHP:RAFT end respectively in THF ($[TTC]_0 = 5.5 \text{ mM}$)).

4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 ppm Figure S7. ¹H NMR (CDCl₃, 23 °C) of PMMA-TTC after 18 h end group removal using EPHP.

Figure S8. Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **PMMA-TTC** (black) before photoinduced RAFT removal and **PMMA-H** (red) post-removal RAFT removal using 15:1 ratio EPHP:RAFT end respectively in THF with $[TTC]_0 = 5.5$ mM and 365 nm UV light.

Figure S9. Photographs of P2VP-TTC before (left) and after (right) 365 nm irradiation.

Figure S10. Stacked ¹H NMR (CDCl₃, 23 °C) of **P2VP-TTC** (top) before end group removal and **P2VP-H** (bottom) after end group removal using TTMSS.

Figure S11. a) Reaction scheme for photoinduced (λ =365 nm) removal of TTC from **PS-TTC** in THF ([TTC]₀ = 5.5 mM) using TTMSS:TTC of 15:1. b) Normalized absorbance at 309 nm as a function of irradiation time. c) UV-Vis absorption spectra from aliquots taken at known time intervals throughout the reaction. d) Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **PS-TTC** before (black solid) and after (red dashed) the reaction. e) Offset ¹H NMR (CDCl₃, 25 °C) spectra of methylene proton signal (S-*CH*₂-C₁₁H₂₃) before (top) and after (bottom) the reaction.

Figure S12. Stacked ¹H NMR (CDCl₃, 23 °C) of **PS-TTC** (top) before and (bottom) after reduction using TTMSS.

Figure S13. Removal of trithiocarbonate end group functionality from **P2VP-TTC** was complete in 26.5 h using a 15:1 ratio EPHP:RAFT end respectively in THF ($[TTC]_0 = 5.5 \text{ mM}$) and 365 nm UV light. a) Reaction scheme for the photoinduced removal of RAFT CTA using EPHP and UV-light. b) Normalized absorbance vs time plot for the reaction. c) UV-Vis absorption spectra at different time intervals. Final ABS was found to be 0.12 after 26.5 h d) Offset ¹H NMR stacked spectra of NMR region associated with the dodecyl methylene directly neighboring the trithiocarbonate of **P2VP-TTC** before (top) and after (bottom) the reaction.

Figure S14. ¹H NMR (CDCl₃, 23 °C) of P2VP-TTC after 26.5 h end group removal using EPHP.

Figure S15. ¹H NMR (CDCl₃, 600 mHz, 23 °C) of P4VP-H after 24 h end group removal using EPHP.

Figure S16. Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **P2VP-TTC** (black) before photoinduced RAFT removal and **P2VP-H** (red) post-removal RAFT removal using 15:1 ratio EPHP:RAFT end respectively in THF with $[TTC]_0 = 5.5$ mM and 365 nm light.

Figure S17. Normalized absorbance vs time plot for the 365 nm irradiation of **PMMA-TTC**, **P2VP-TTC**, and **P4VP-TTC** reaction mixtures (15:1 TTMSS:RAFT ($[TTC]_0 = 5.5 \text{ mM}$) in THF).

Figure S18. TGA thermogram overlay of **PMMA-TTC** before RAFT removal and **PMMA-H** after RAFT removal using TTMSS taken at a heating rate of 5 °C min⁻¹ under Ar flow. The thermal decomposition temperature (T_{d1} and T_{d2}) are defined at the point where 5% mass loss has occurred.

Figure S19. TGA thermogram overlay of **P2VP-TTC** and **P2VP-H** after reduction with TTMSS using a heating rate of 5 °C min⁻¹ under Ar. The thermal decomposition temperatures (T_{d1} and T_{d2}) are defined at the point where 5% mass loss has occurred.

Figure S20. Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **PS-TTC** (black) before photoinduced RAFT removal, **PS-H** (blue) post-removal RAFT removal using 15:1 ratio TTMSS:RAFT end respectively in toluene at 5.5 mM, **PS-H** (green) post-removal RAFT removal using 30:1 ratio TTMSS:RAFT end respectively in THF at 2.75 mM, **PS-H**, (red) post-removal RAFT removal using 15:1 ratio TTMSS:RAFT end respectively in THF at 5.5 mM. Concentrations are relative to the RAFT CTA chain end and performed under 365 nm light.

Figure S21. Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **P2VP-TTC** (black) before photoinduced RAFT removal and **P2VP-H** (red) post-removal RAFT removal using 30:1 ratio TTMSS:RAFT end respectively in THF ($[TTC]_0 = 5.5 \text{ mM}$) and 365 nm light.

Figure S22. Photograph of the apparatus used for RAFT removal using a 50 LED strip (452 nm). Intensity was measured as 0.3 mW/cm^2 from 5 clustered LEDs at a distance of 0.5 cm.

Figure S23. Removal of trithiocarbonate end group functionality from **P2VP-TTC** was complete in 1.25 h using a 15:1 ratio TTMSS:RAFT end respectively in THF ($[TTC]_0 = 5.5 \text{ mM}$) and 452 nm blue light. . a) Reaction scheme for the photoinduced removal of RAFT CTA using TTMSS and blue light. b) Normalized absorbance vs time plot for the reaction. c) UV-Vis absorption spectra at different time intervals during the reaction. d) Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **P2VP-TTC** before (black) and after (red) the reaction. e) Offset ¹H NMR spectra of NMR region associated with the dodecyl methylene directly neighboring the trithiocarbonate of **P2VP-TTC** before (top) and after (bottom) the reaction.

Figure S24. Normalized SEC-RI trace overlay (THF mobile phase, 23 °C) of **P2VP-TTC** (black) before photoinduced RAFT removal, **P2VP-H** (red) post-removal RAFT removal using 452 nm light, and **P2VP-H** (blue) post-removal RAFT removal using 365 nm light. Both reactions performed with a 15:1 ratio TTMSS:RAFT end respectively in THF at 5.5 mM concentration relative to RAFT CTA.

Figure S25. ¹H NMR (CDCl₃, 23 °C) of **PMMA-TTC** spectra showing the integration ratios used for determining molecular weight via end group analysis.

Figure S26. DSC thermogram of **PMMA-TTC** (exo up) before RAFT clipping. Samples were cycled from 25 °C to 150 °C at a rate of 10 °C min⁻¹ under N_2 . Data displayed is the 2nd heating.

Figure S27. Normalized SEC-RI trace (THF mobile phase, 25 °C) of **PMMA-TTC** poly(methyl methacrylate) homopolymer before photoinduced RAFT clipping (Mn = 7.8 kDa, D = 1.08) determined by conventional column calibration using PS standards.

Figure S28. ¹H NMR (CDCl₃, 23 °C) of **P2VP-TTC** spectra showing the integration ratios used for determining molecular weight via end group analysis.

Figure S29. DSC thermogram of **P2VP-TTC** (exo up) before RAFT clipping. Samples were cycled from 25 °C to 150 °C at a rate of 10 °C min⁻¹ under N₂. Data displayed is the 2^{nd} heating.

Figure S30. Normalized SEC-RI trace (THF mobile phase, 25 °C) of **P2VP-TTC** poly(2-vinylpyridine) homopolymer before photoinduced RAFT clipping (Mn = 8.3 kDa, D = 1.09) and determined by conventional column calibration using PS standards.

determining molecular weight via end group analysis.

Figure S32. DSC thermogram of **P4VP-TTC** (exo up) before RAFT clipping. Samples were cycled from 25 °C to 150°C at a rate of 10 °C min⁻¹ under N₂. Data displayed is the 2^{nd} heating.

Figure S33. ¹H NMR (CDCl₃, 23 °C) of **PS-TTC** spectra showing the integration ratios used for determining molecular weight via end group analysis.

Figure S34. DSC thermogram of **PS-TTC** (exo up) before RAFT clipping. Samples were cycled from 25 °C to 150 °C at a rate of 10 °C min⁻¹ under N_2 . Data displayed is the 3rd heating.

Figure S35. Normalized SEC-RI trace (THF mobile phase, 25 °C) of **PS-TTC** polystyrene homopolymer before photoinduced RAFT clipping (Mn = 7.8 kDa, D = 1.1) determined by conventional column calibration using PS standards.

Figure S36. ¹H NMR (CDCl₃, 23 °C) of **PMMA-H** (bottom) after reduction using TTMSS and triplicate precipitations with hexanes. Some TTMSS by-products remain present.

Figure S37: UV-Vis absorption of PMMA-TTC in THF at various concentrations ($\lambda_{max} = 310$ nm) diluted from initial 5.5 mM solution.

Figure S38: Absorbance vs. concentration linear calibration curve for PMMA-TTC in THF at 310 nm. Fit: $y = m^*x + b$ Slope (m) = Molar absorptivity = 10,950 L mol⁻¹ cm⁻¹ (at 310 nm) R squared = 0.9970

Figure S39. UV-Vis absorption of PS-TTC in THF at various concentrations ($\lambda_{max} = 312 \text{ nm}$) diluted from initial 5.5 mM solution.

Figure S40. Absorbance vs. concentration linear calibration curve for PS-TTC in THF at 312 nm.

Fit: y = mx + bSlope (m) = molar absorptivity= 10,880 L mol⁻¹ cm⁻¹ (at 312 nm); $R^2 = 0.9995$

Figure S41: UV-Vis absorption of P2VP-TTC in THF at various concentrations ($\lambda_{max} = 311$ nm) diluted from initial 5.5 mM solution.

Figure S42. Absorbance vs. concentration linear calibration curve for P2VP-TTC in THF at 311

nm. Fit: y = mx + bSlope (m) = molar absorptivity = 7,090 L mol⁻¹ cm⁻¹ (at 311 nm) R² = 0.9995

Figure S43: UV-Vis absorption of P4VP-TTC in toluene/DMAC (1:1) at various concentrations $(\lambda_{max} = 311 \text{ nm})$ diluted from initial 5.5 mM solution.

Figure S44: Absorbance vs. concentration linear calibration curve for P4VP-TTC in toluene/DMAC (1:1) at 311 nm. Fit: $y = m^*x + b$ Slope (m) = Molar absorptivity = 7,360 L mol⁻¹ cm⁻¹ (at 311 nm) $R^2 = 0.9980$

Figure S45: Normalized absorbance of TTC functionalized polymers comparing λ_{max} .

Figure S46: UV-Vis absorbance for TTC functionalized polymers with zoomed inset showing n- π^* transition absorbance wavelength maxima.

Table S1: Comparison of λ_{max} used for kinetic experiments and molar absorptivity in L mol⁻¹ cm⁻¹at 365 nm and 452 nm (P2VP-TTC) for TTC functionalized polymers.

Polymer	λ _{max} π = π*(nm)	λ_{max} n = $\pi^*(nm)$	Molar Absorptivity (L mol ⁻¹ cm ⁻¹) at 365 nm	Molar Absorptivity (L mol ⁻¹ cm ⁻¹) at 452 nm
P2VP	311	440	197	71
P4VP	311	420	76	-
PS	312	434	70	-
PMMA	310	445	173	-

Figure S47: Logarithmic normalized concentrations of remaining CTA (ln[CTA]₀/[CTA]) as a function of time (h) using EPHP (15 equiv. to CTA) in their respective reaction solvent at 28 ± 3 °C ([CTA]₀ = 5.5 mM) while irradiating with 365 nm light.

REFERENCES

1. Moad, G.; Chong, Y. K.; Postma, A.; Rizzardo, E.; Thang, S. H. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. *Polymer* **2005**, *46*, 8458-8468.

2. Fultz, B. A.; Terlier, T.; Dunoyer de Segonzac, B.; Verduzco, R.; Kennemur, J. G. Nanostructured Films of Oppositely Charged Domains from Self-Assembled Block Copolymers. *Macromolecules* **2020**, *53*, 5638-5648.