Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary Information for

Time-Dependent Covalent Network Formation in Extrudable Hydrogels

Dylan G. Karis^a and Alshakim Nelson^a

^aDepartment of Chemistry, University of Washington, Seattle, Washington 98105, USA

Table of Contents

Figure S1. ¹ H NMR spectrum of F127-BUM (500 MHz, 293 K, CDCl ₃)3
Figure S2. GPC trace of F127-BUM in CHCl ₃ with 0.1 wt/v% TEA as stabilizer4
Figure S3. Photorheological experiment on 30 wt% F127-BUM hydrogel with varying equivalents of EDT
after 1 day of equilibration5
Figure S4. Photorheological experiment on 30 wt% F127-BUM hydrogel with varying equivalents of EDT
after 3 days of equilibration5
Figure S5. Photorheological experiment on 30 wt% F127-BUM hydrogel with varying equivalents of EDT
after 14 days of equilibration6
Figure S6. Molecular weight between cross-links control with mercaptoethanol
Figure S7. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 0.5 equivalents of EDT
measured over the course of 14 days7
Figure S8. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 1 equivalent of EDT measured
over the course of 14 days7
Figure S9. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 1.5 equivalents of EDT
measured over the course of 14 days8
Figure S10. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 2 equivalents of EDT
measured over the course of 14 days8
Figure S11. Viscous flow controls
Figure S12. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 1.5 equivalents of EDT
without LAP photoinitator measured over the course of 7 days9
Figure S13. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 3 equivalents of
mercaptoethanol measured over the course of 7 days10
Figure S14. Hydrogel tube extrusion setup using coaxial nozzle
Figure S15. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying
equivalents of EDT immediately after EDT addition11
Figure S16. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying
equivalents of EDT 1 day after EDT addition
Figure S17. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying
equivalents of EDT 3 days after EDT addition12
Figure S18. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying
equivalents of EDT 7 days after EDT addition12
Figure S19. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying
equivalents of EDT 14 days after EDT addition

Supplementary Experimental Details

Gel permeation chromatography was performed using a Waters chromatograph equipped with two 10 μ m Malvern columns (300 mm X 7.8 mm) connected in series with increasing pore size (1000, 10000 Å), using chloroform as the eluent, and calibrated with poly(ethylene glycol) standards (102 to 40000 g/mol). Relative molecular weights were measured in chloroform using poly(ethylene glycol) standards and a refractive index detector (flow rate: 1 mL/min).

Supplementary Table

Table S1. Summary of all data obtained for 30 wt% F127-BUM with varying equivalents of EDT over 14 days of equilibration

Dithiol	Day	G_N^0	Mc	Y (MPa) ^b	E (MPa) ^b	Max Elongation at	Max Comp.	Deg. of	Gel Fraction
equiv.		(kg/mol)	(kg/mol) ^a			break (mm/mm)	Stress (MPa) ^c	Swelling (%)	(%)
0	0	347 ± 6	7.2 ± 0.1	1.0 ± 0.1	1.1 ± 0.1	0.55 ± 0.08	5 ± 1	391 ± 1	97.1 ± 0.1
0.5	0	337.8 ± 0.6	7.43 ± 0.01	-	-	-	-	445.2 ± 0.6	99.0 ± 0.2
	1	330 ± 10	7.5 ± 0.3	-	-	-	-	455.5 ± 0.9	98.0 ± 0.4
	3	329 ± 5	7.6 ± 0.1	0.78 ± 0.07	0.98 ± 0.03	2.0 ± 0.2	4.6 ± 0.9	452 ± 2	96.8 ± 0.4
	7	259 ± 1	9.68 ± 0.05	-	-	-	-	482.2 ± 0.9	98.1 ± 0.3
	14	266 ± 3	9.4 ± 0.1	-	-	-	-	-	-
1	0	292 ± 5	8.6 ± 0.3	-	-	-	-	467 ± 4	98.5 ± 0.5
	1	269 ± 3	9.3 ± 0.1	-	-	-	-	503.4 ± 8	97.6 ± 0.1
	3	249 ± 3	10.1 ± 0.1	0.54 ± 0.04	0.654 ± 0.006	3.2 ± 0.5	2.8 ± 0.2	533 ± 3	95.9 ± 0.3
	7	175 ± 3	14.3 ± 0.2	-	-	-	-	557 ± 3	97.0 ± 0.4
	14	230 ± 10	10.8 ± 0.5	-	-	-	-	-	-
1.5	0	266.0 ± 0.6	9.44 ± 0.02	-	-	-	-	502 ± 1	96.7 ± 0.3
	1	218 ± 3	11.5 ± 0.2	-	-	-	-	551 ± 1	96.0 ± 0.2
	3	172 ± 4	14.6 ± 0.4	0.25 ± 0.03	0.26 ± 0.03	8 ± 1	1.1 ± 0.1	682 ± 8	92.4 ± 0.5
	7	139 ± 5	18.1 ± 0.6	-	-	-	-	1000 ± 14	90.2 ± 0.5
	14	148 ± 5	17.0 ± 0.6	-	-	-	-	-	-
2	0	245 ± 4	10.3 ± 0.2	-	-	-	-	518 ± 2	96.5 ± 0.1
	1	191 ± 4	13.2 ± 0.2	-	-	-	-	623 ± 2	94.5 ± 0.1
	3	124 ± 6	20 ± 1	0.04 ± 0.01	0.039 ± 0.004	24.9 ± 0.9	0.44 ± 0.06	693 ± 7	83.8 ± 0.3
	7	55 ± 1	45 ± 1	-	-	-	-	2600 ± 100	70. ± 2
	14	62 ± 2	41 ± 1	-	-	-	-	-	-

^a Calculated using equation (1)

All error given as standard deviation over 3 replicated tests

^b Calculated as the linear region between 0 and 10% extension

^c Reported at 80% extension

Supplementary Figures

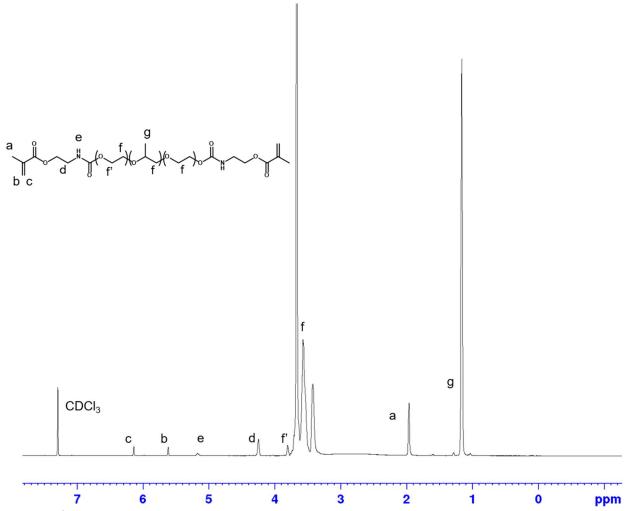
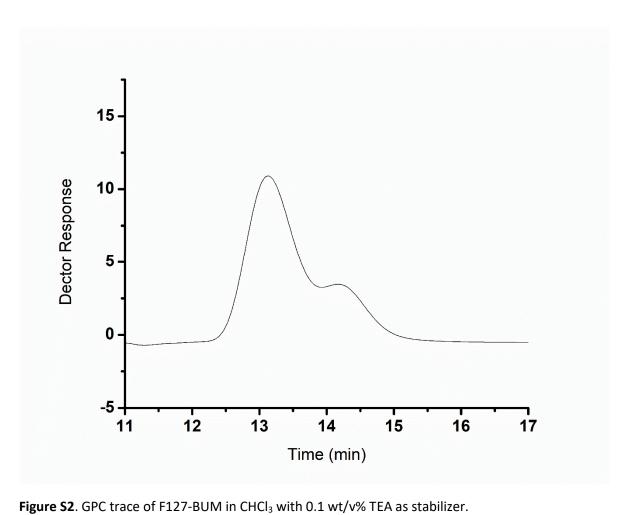
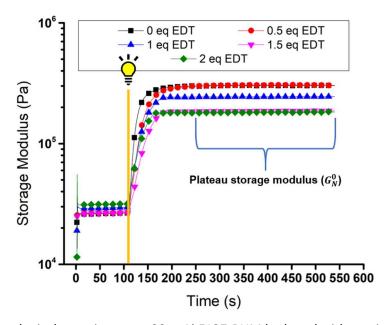
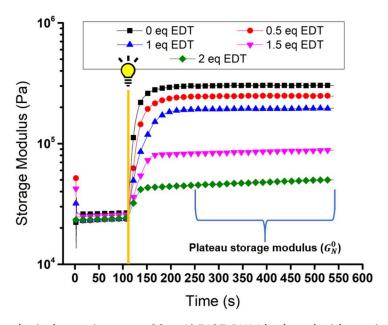




Figure S1. 1 H NMR spectrum of F127-BUM (500 MHz, 293 K, CDCl $_{3}$)

Smaller peak at higher retention time is due to diblock copolymers present in F127 batches from vendor.


Figure S3. Photorheological experiment on 30 wt% F127-BUM hydrogel with varying equivalents of EDT after 1 day of equilibration.

At 120 s, the UV light is turned on and left on for the remainder of the experiment.

Figure S4. Photorheological experiment on 30 wt% F127-BUM hydrogel with varying equivalents of EDT after 3 days of equilibration.

At 120 s, the UV light is turned on and left on for the remainder of the experiment.

Figure S5. Photorheological experiment on 30 wt% F127-BUM hydrogel with varying equivalents of EDT after 14 days of equilibration.

At 120 s, the UV light is turned on and left on for the remainder of the experiment.

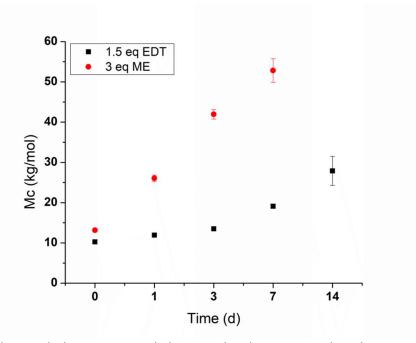
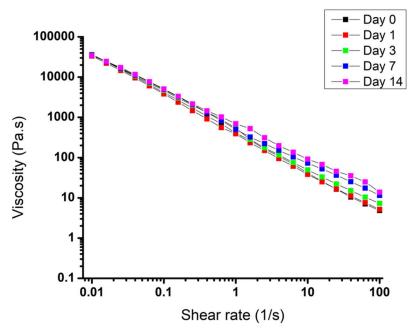
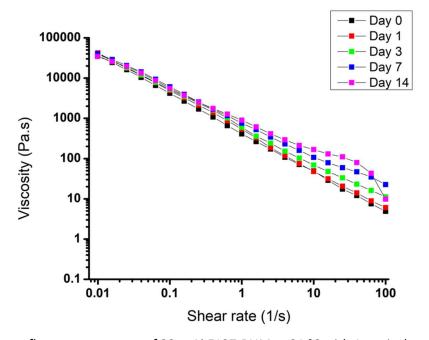
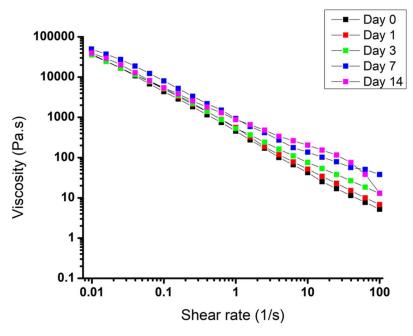




Figure S6. Molecular weight between cross-links control with mercaptoethanol.


 M_c calculated from equation (1). Mercaptoethanol (ME) shows the effect of dead chain-ends on the Mc value as ME does not contribute to the hydrogel network.

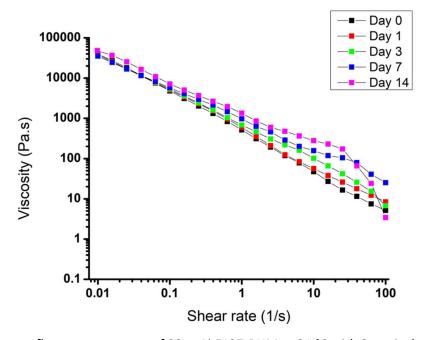

Figure S7. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 0.5 equivalents of EDT measured over the course of 14 days.

Figure S8. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 1 equivalent of EDT measured over the course of 14 days.

Figure S9. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 1.5 equivalents of EDT measured over the course of 14 days.

Figure S10. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 2 equivalents of EDT measured over the course of 14 days.

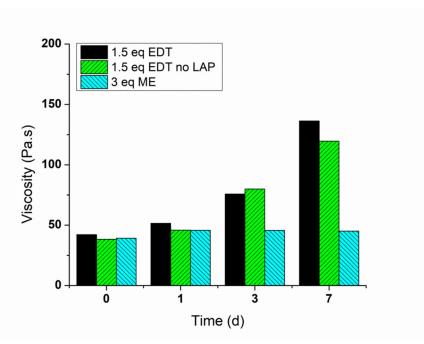
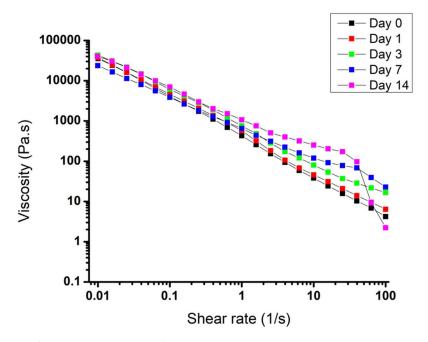
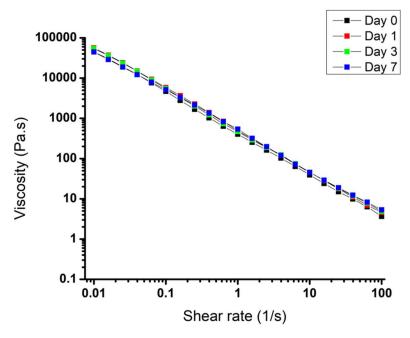
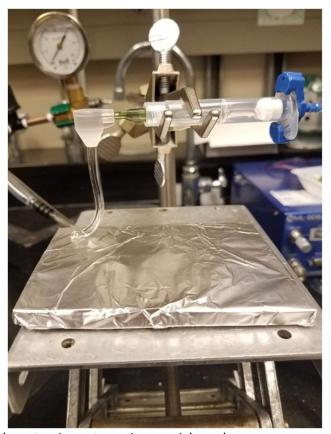
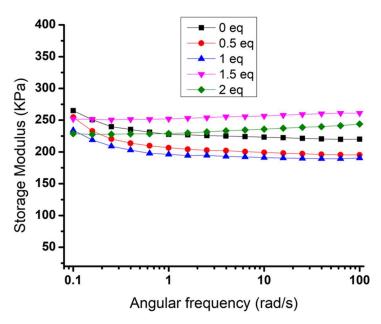
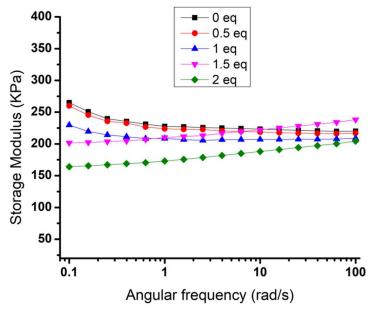




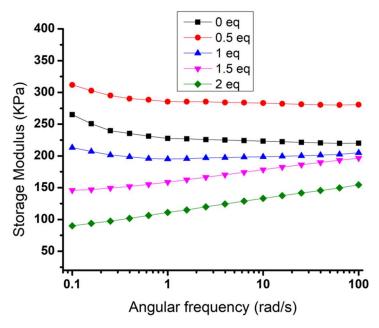
Figure S11. Viscous flow controls.

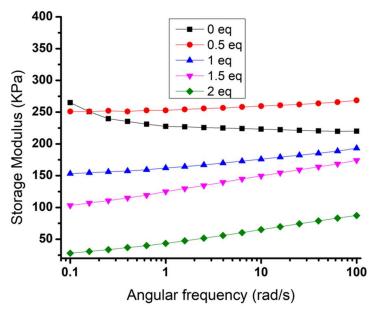
Measurements of 30 wt% F127-BUM taken at 10 s $^{-1}$ and at 21 °C. The photoinitiator LAP does not influence the viscosity change over time. Mercaptoethanol has no effect on the viscosity of the hydrogel.

Figure S12. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 1.5 equivalents of EDT without LAP photoinitator measured over the course of 7 days.

Figure S13. Viscous flow measurement of 30 wt% F127-BUM at 21 °C with 3 equivalents of mercaptoethanol measured over the course of 7 days.


Figure \$14. Hydrogel tube extrusion setup using coaxial nozzle


Figure S15. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying equivalents of EDT immediately after EDT addition.

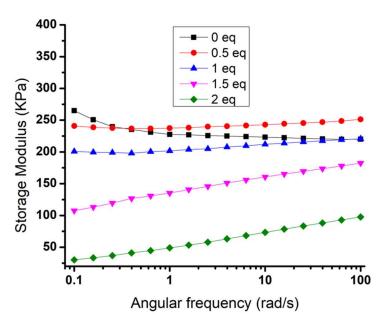

Figure S16. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying equivalents of EDT 1 day after EDT addition.

Figure S17. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying equivalents of EDT 3 days after EDT addition.

Figure S18. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying equivalents of EDT 7 days after EDT addition.

Figure S19. Frequency sweep measurement of 30 wt% F127-BUM at 1% strain and 21 °C with varying equivalents of EDT 14 days after EDT addition.