Electronic Supporting Information (ESI)

Amphiphobic polyHIPEs with pH-triggered transition to hydrophilicoleophobic for controlled removal of water from oil-water mixtures

Xiaomin Li^a, Tao Zhang^{a,b*}, Zhiguang Xu^c, Huanjie Chi^a, Zhu Wu^a and Yan Zhao^{a,*}

^a College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

^b Jiangsu Guowang High-Technique Fiber Co., Ltd, Suzhou 215228, China.

^c China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China.

Corresponding authors:

zhang.tao@suda.edu.cn (T. Zhang)

yanzhao@suda.edu.cn (Y. Zhao)

1. Experimental

	RH-20-5	RH-35-5	RH-50-5	RH-35-3	RH-35-7		
Continuous aqueous phase (g)							
DEAEMA	0.50	0.90	1.30	0.90	0.90		
AAm	1.80	1.40	1.00	1.40	1.40		
MBAAm	0.25	0.25	0.25	0.25	0.25		
F127	0.60	0.60	0.60	0.60	0.60		
H ₂ O	8.40	8.40	8.40	8.40	8.40		
Total	11.55	11.55	11.55	11.55	11.55		
Total (volume, mL)	9.5	9.5	9.5	9.5	9.5		
Dispersed organic phase (mL)							
Toluene	34.60	34.60	34.60	34.60	34.60		
FMA	1.73	1.73	1.73	1.03	2.76		
Total	36.33	36.33	36.33	35.63	37.36		
Initiators added after HIPE formation							
APS	0.15	0.15	0.15	0.15	0.15		
TEMED	0.08	0.08	0.08	0.08	0.08		
DEAEMA content (%)	19.61	35.29	50.98	35.29	35.29		
FMA content (%)	4.76	4.76	4.76	2.89	7.39		
Dispersed phase fraction (%)	79.3	79.3	79.3	78.9	79.7		
Double-bond concentration within the continuous phase (mol/L)							
	3.72	3.31	2.90	3.31	3.31		
Double-bond concentration within the dispersed phase (mol/L)							
	0.15	0.15	0.15	0.09	0.24		
Theoretical density (g/cc)*	0.06-0.09	0.06-0.09	0.06-0.09	0.06-0.08	0.06-0.11		
Density (g/cc)	0.17	0.16	0.17	0.17	0.19		
Density (g/cc)**	0.19	0.18	0.19	0.18	0.19		

 Table S1 Recipes and properties of the RH-X-Ys

* Maximum and minimum densities were calculated with and without FMA, respectively.

**Density of the corresponding RH-X-Y-Cls.

2. Results and discussion

	RH-35-3-Cl	RH-35-5-Cl	RH-35-7-Cl
Cl content (%)	0.246±0.134	0.1±0.076	0.231±0.071

Table S2. Cl contents (from EDS) within the RH-35-Y-Cls.

Fig. S1 Optical images of various oils on dry RH-35-5-Cl in air: (a) sunflower oil; (b) waste engine oil; (c) silicone oil; (d) soybean oil; (e) mineral oil; (f) liquid paraffin; (g) diesel; Soybean oil, paraffin oil and mineral oil were dyed with oil red O; Micrograph of (h) chloroform on water-swollen RH-35-5-Cl under water.

Fig. S2 Elemental (C, O, N, F, and Cl) contents (determined by EDS) of RH-35-5 from polymerization for 1, 2 and 4 h.

Fig. S3 Void diameter of (a-c) the RH-35-*Y*s and (a'-c') the RH-35-*Y*-Cls: (a) RH-35-3; (b) RH-35-5; (c) RH-35-7; (a') RH-35-3-Cl; (b') RH-35-5-Cl; (c') RH-35-7-Cl.

Fig. S4 (a) A typical optical micrograph and dispersed droplet distribution of the HIPE (HIPE-35-5) for RH-35-5 preparation.

3. Videos

- Video 1: To show the absorption of water under hexadecane triggered by adding an HCl solution.
- Video 2: To show the continuous removal of water from hexadecane-water mixture under help of a peristaltic pump.