Supporting Information

a-Diimine Nickel Complexes Bearing Axially Bulky Terphenyl and

Equatorially Bulky Dibenzobarrelene Groups: Synthesis,

Characterization and Olefin Polymerization Studies

Xiaohua Wang,^{a,b} Bo Dong,^a Qi Yang,^b Heng Liu,^{a,c*} Chunyu Zhang,^{a,c*} Xuequan

Zhang^{a,b}

^a CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, China.

^b School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026, China.

^c Key Laboratory of Rubber-Plastics of the Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao 266042, P. R. China.

Contents

1. Tables

- 2. NMR Spectra of intermediates and ligands
- **3. NMR Spectra of polymers**
- 4. GPC Spectra of polymers
- **5. DSC Spectra of polymers**
- 6. Crystallographic data for complexes Ni1 and Ni4.

1. Tables

entry	Time (min)	Yield (g)	Act. ^b	$M_{ m n}{}^{ m c}$	$M_{ m w}{}^{ m c}$	$M_{ m w}/M_{ m n}^{ m c}$	B^{d}
1	20	0.087	1.30	5.3	5.6	1.06	70.2
2	40	0.148	1.11	9.3	10.0	1.08	70.9
3	60	0.202	1.01	11.8	13.4	1.13	69.6
4	80	0.269	1.00	14.7	17.1	1.16	68.4
5	100	0.320	0.96	18.0	21.5	1.19	64.9

Table S1. Ethylene polymerization results using Ni2/Et₂AlCl at 25°C.^a

^a Polymerization conditions: 2.0 μ mol of Ni2, 500 equiv of Et₂AlCl, 2 mL of CH₂Cl₂, solvent, toluene, total volume, 30 mL, 1 atm of ethylene, T = 25°C. ^b Activity (Act.) = 10⁵ g/(mol Ni•h). ^c M_n and M_w : 10⁴ g/mol, M_w and M_w/M_n were determined by GPC in trichlorobenzene at 150 °C using polystyrene standards. ^d B = branches per 1000 carbons, determined by ¹H NMR spectroscopy.

Table S2. Ethylene polymerization results using Ni2 at 20 °C.^a

entry	Cocat.	Al/Ni	Yield (g)	Act. ^b	$M_{ m w}{}^{ m c}$	$M_{ m w}/M_{ m n}{}^{ m c}$	B^{d}	$T_{\rm m}^{\rm e}$ (°C)
1	MAO	500	3.11	9.3	150.2	1.74	30.1	-
2	MAO	1000	4.12	12.3	163.4	1.46	31.6	90.0/128.8
3	MAO	2000	4.01	12.0	159.8	1.67	30.5	103.1
4	MAO	3000	3.87	11.6	152.1	1.68	36.4	97.2
5	MAO	4000	2.08	6.24	135.9	1.61	39.6	90.7
6	Et ₂ AlCl	200	1.74	5.22	131.1	1.40	35.0	85.8
7	Et ₂ AlCl	500	2.34	7.02	136.4	1.28	36.5	85.7
8	Et ₂ AlCl	800	2.03	6.09	115.3	1.49	34.2	86.2

^a Polymerization conditions: 2.0 μ mol of **Ni2**, 2 mL of CH₂Cl₂, solvent, toluene, total volume, 60 mL, 10 atm of ethylene, time, 10 min, T = 20 °C. ^b Activity (Act.) = 10⁶ g/(mol Ni•h). ^c M_w : 10⁴ g/mol, M_w and M_w/M_n were determined by GPC in trichlorobenzene at 150 °C using polystyrene standards. ^d B = branches per 1000 carbons, determined by ¹H NMR spectroscopy. ^e T_m was determined by differential scanning calorimetry (DSC).

2. NMR Spectra of intermediates and ligands

Figure S1. ¹H and ¹³C NMR spectrum of L0-CH₃.

Figure S2. ¹H, ¹³C NMR and ¹⁹F NMR spectrum of L0-CF₃.

Figure S3. ¹H and ¹³C NMR spectrum of L1.

Figure S4. ¹H, ¹³C NMR and ¹⁹F NMR spectrum of L2.

S8

Figure S5. 1 H, 13 C NMR and 19 F NMR spectrum of L3.

Figure S6. ¹H, ¹³C NMR and ¹⁹F NMR spectrum of L4.

S11

Figure S7. ¹H, ¹³C NMR and ¹⁹F NMR spectrum of L5.

3. NMR Spectra of polymers

Figure S8. ¹H NMR spectrum of the polyethylene produced by Ni2/MAO from table 1, entry 1. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S9. ¹H NMR spectrum of the polyethylene produced by **Ni2/MMAO** from table 1, entry 2. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S10. ¹H NMR spectrum of the polyethylene produced by Ni2/Et₂AlCl from table 1, entry 3. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S11. ¹H NMR spectrum of the polyethylene produced by Ni2/EASC from table 1, entry 4. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S12. ¹H NMR spectrum of the polyethylene produced by Ni1/MAO from table 2, entry 1. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S13. ¹H NMR spectrum of the polyethylene produced by Ni3/MAO from table 2, entry 3. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S14. ¹H NMR spectrum of the polyethylene produced by Ni4/MAO from table 2, entry 4. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S15. ¹H NMR spectrum of the polyethylene produced by Ni5/MAO from table 2, entry 5. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S16. ¹H NMR spectrum of the polyethylene produced by Ni1/MAO from table 2, entry 6. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S17. ¹H NMR spectrum of the polyethylene produced by Ni1/MAO from table 2, entry 7. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S18. ¹H NMR spectrum of the polyethylene produced by Ni1/MAO from table 2, entry 8. (1,1,2,2-tetrachloroethane- d_2 , 120 °C).

Figure S19. ¹H NMR spectrum of the polyethylene produced by Ni2/MAO from table 2, entry 9. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S20. ¹H NMR spectrum of the polyethylene produced by Ni2/MAO from table 2, entry 10. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S21. ¹H NMR spectrum of the polyethylene produced by Ni2/MAO from table 2, entry 11. (1,1,2,2-tetrachloroethane- d_2 , 120 °C).

Figure S22. ¹H NMR spectrum of the polyethylene produced by Ni3/MAO from table 2, entry 12. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S23. ¹H NMR spectrum of the polyethylene produced by Ni3/MAO from table 2, entry 13. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S24. ¹H NMR spectrum of the polyethylene produced by Ni3/MAO from table 2, entry 14. (1,1,2,2-tetrachloroethane- d_2 , 120 °C).

Figure S25. ¹H NMR spectrum of the polyethylene produced by Ni4/MAO from table 2, entry 15. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S26. ¹H NMR spectrum of the polyethylene produced by Ni4/MAO from table 2, entry 16. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S27. ¹H NMR spectrum of the polyethylene produced by Ni4/MAO from table 2, entry 17. (1,1,2,2-tetrachloroethane- d_2 , 120 °C).

Figure S28. ¹H NMR spectrum of the polyethylene produced by Ni5/MAO from table 2, entry 18. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S29. ¹H NMR spectrum of the polyethylene produced by Ni5/MAO from table 2, entry 19. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S30. ¹H NMR spectrum of the polyethylene produced by Ni5/MAO from table 2, entry 20. (1,1,2,2-tetrachloroethane- d_2 , 120 °C).

Figure S31. ¹H NMR spectrum of the poly(1-hexene) produced by Ni1/EASC from table 4, entry 1. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S32. ¹H NMR spectrum of the poly(1-hexene) produced by Ni2/EASC from table 4, entry 2. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S33. ¹H NMR spectrum of the poly(1-hexene) produced by Ni3/EASC from table 4, entry 3. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S34. ¹H NMR spectrum of the poly(1-hexene) produced by Ni4/EASC from table 4, entry 4. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S35. ¹H NMR spectrum of the poly(1-octene) produced by Ni2/EASC from table 4, entry 6. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S36. ¹H NMR spectrum of the poly(1-octadecene) produced by Ni2/EASC from table 4, entry 7. (*o*-dichlorobenzene- d_4 , 120 °C).

Figure S37. ¹H NMR spectrum of the poly(1-octadecene) produced by Ni2/EASC from table 4, entry 8. (o-dichlorobenzene-d₄, 120 °C).

4. GPC Spectra of polymers

Figure S38. GPC of the polyethylene produced by Ni2/MAO from table 1, entry 1.

PD 1.51936

MW Averag	ges					
Peak No	Мр	Mn	Mw	Mz	Mz+1	Mv
1	1405616	956321	1452994	1999232	2548868	1383491

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.02	16.65	19.35	-11.2118	100	1090.56	100

Figure S39. GPC of the polyethylene produced by Ni2/MMAO from table 1, entry 2.

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	1595799	1065767	1364785	1631521	1859682	1327029	1.28057	
Processed	Peaks							

Peak No Name Start RT Max RT End RT Pk Height % Height % Area Area (mins) (mins) (mins) (mV) (mV.secs) -10.3618 0 1 15.48 16.52 18.85 762.51 100 Figure S40. GPC of the polyethylene produced by Ni2/Et₂AlCl from table 1, entry 3.

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	1107983	834805	1265760	1813838	2408436	1200071	1.51623

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.07	16.90	19.45	-11.9259	100	1162.83	100
Figure S41	I. GPC	of the pol	lyethylen	e produce	ed by Ni2/I	EASC from	n table 1, e	ntry 4.

MW Averages

Peak No	Mp	Mn	Mv	v N	Az Mz	+1 M	v PD	
1	167068	8 10509	62 1747	919 247	8460 3087	7040 1650	395 1.663	16
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	<mark>% H</mark> eight	Area (mV.secs)	% Area
1		14.92	16.33	19.05	-4.94002	0	596.105	100

Figure S42. GPC of the polyethylene produced by Ni1/MAO from table 2, entry 1.

MW Averages	
-------------	--

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	1024617	684691	1151244	1717729	2253453	1080750	1.68141

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.20	16.85	19.37	-3.64106	100	442.206	100

Figure S43. GPC of the polyethylene produced by Ni3/MAO from table 2, entry 3.

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	124126	54039	161764	343464	526095	142366	2.99347	
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	t % Heig	ht Area (mV.secs)	% Area
1		16.65	19.20	22.95	-3.47811	10	631.265	100
Figure S4	4. GPC	of the po	lyethylen	e produc	ed by Ni4	/MAO fi	om table 2, e	ntry 4.

MW Avera	ges								
Peak No	Мр	Mn	Mw	Mz	Mz+1	Mv	PD		
1	190486	87598	255068	513019	772124	226676	2.911	8	
Processed	Peaks								
Pea <mark>k</mark> No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Heigh (mV)	t % Heig	ght (r	Area nV.secs)	% Area
1		16.33	18.75	22.97	-3.3169) 1	00	570.006	100

Figure S45. GPC of the polyethylene produced by Ni5/MAO from table 2, entry 5.

MW Averag	ges							
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	635948	373055	722588	1173880	1733411	670755	1.93695	
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.25	17.48	20.68	-6.94794	100	816.1	100

Figure S46. GPC of the polyethylene produced by Ni1/MAO from table 2, entry 6.

MW Averag	ges							
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	414401	255135	417932	599531	782715	395015	1.63808	

Processed	Pea	ks
-----------	-----	----

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		16.27	17.93	21.02	-10.1848	100	1071.59	100

Figure S47. GPC of the polyethylene produced by Ni1/MAO from table 2, entry 7.

MW Avera	ges							
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	163434	109730	177227	255604	339892	167566	1.61512	
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Heigh	t Area (mV.secs)	% Area
1		16.93	18.83	21.73	-14.7701	100	1568.49	100
—								

Figure S48. GPC of the polyethylene produced by Ni1/MAO from table 2, entry 8.

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	646116	404026	724327	1087145	1452518	679138	1.79277

-

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.53	17.47	20.63	-8.99406	100	1022.34	100

Figure S49. GPC of the polyethylene produced by Ni2/MAO from table 2, entry 9.

MW Averag	ges							
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	485635	274652	520552	814135	1116321	484611	1.89531	
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.77	17.77	20.95	-7.73879	100	942.838	100

Figure S50. GPC of the polyethylene produced by Ni2/MAO from table 2, entry 10.

MW	Averages	
----	----------	--

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	249696	156948	298112	536793	851520	273626	1.89943

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		16.00	18.38	21.37	-6.27879	100	793.843	100

Figure S51. GPC of the polyethylene produced by Ni2/MAO from table 2, entry 11.

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	658835	398733	719576	1117235	1523680	671369	1.80466	
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.48	17.32	20.07	-4.37125	100	526.051	100

Figure S52. GPC of the polyethylene produced by Ni3/MAO from table 2, entry 12.

MW Averag	ges						
Peak No	Мр	Mn	Mw	Mz	Mz+1	Mv	PD
1	201867	132136	228382	345385	460394	213945	1.72839

Pea <mark>k N</mark> o	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		16.73	18.57	21.18	-8.54767	100	1047.53	100

Figure S53. GPC of the polyethylene produced by Ni3/MAO from table 2, entry 13.

MW Averag	ges							
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	119398	62571	150230	282505	422792	135573	2.40095	
Processed	Peaks							
Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	t % Heig	ht Area (mV.secs)	% Area
1		16.77	19.17	22.42	-4.56855	10	699.215	100

Figure S54. GPC of the polyethylene produced by Ni3/MAO from table 2, entry 14.

MW	Averages	

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	58914	32560	134227	492595	1005776	109408	4.12245	

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		15.83	19.98	23.58	-6.40983	100	1179.24	100

Figure S55. GPC of the polyethylene produced by Ni4/MAO from table 2, entry 15.

MW Avera	ges								
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD		
1	23070	11739	58842	270527	551 <mark>671</mark>	4508	3 5.0125	52	
Processed	Peaks								
Peak No	Name	Start RT (mins)	Max R (mins	T End R) (mins	T Pk He) (m)	eight /)	% Height	Area (mV.secs)	% Area
1		16.77	21.0	7 25.0	7 -7.16	128	0	1203.53	100
C			. 1 1 1	J		NT: 4 / N /			

Figure S56. GPC of the polyethylene produced by Ni4/MAO from table 2, entry 16.

MW Averag	ges							
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD	
1	16511	7301	49084	243442	495055	36509	6.72291	

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		16.83	21.42	25.35	-7.45979	100	1515.95	100

Figure S57. GPC of the polyethylene produced by Ni4/MAO from table 2, entry 17.

min Averag	ges								
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD		
1	56158	35997	98272	300648	641970	84114	2.7300	1	
Processed	Peaks								
Peak No	Name	Start RT (mins)	Max RT (mins)	End R (mins	TPkHe) (m\	eight % /)	Height	Area (mV.secs)	% Area
1		16.37	20.03	23.2	2 -7.84	957	100	1132.56	100

Figure S58. GPC of the polyethylene produced by Ni5/MAO from table 2, entry 18.

MW Averages											
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD				
1	33804	22247	78526	337337	750662	63713	3.52973				

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		16.42	20.57	24.15	-7.30727	100	1109.13	100

Figure S59. GPC of the polyethylene produced by Ni5/MAO from table 2, entry 19.

MW Avera	ges								
Peak No	Мр	Mn	Mw	Mz	Mz+1	Mv	PD		
1	20260	13993	67394	284023	532154	52931	4.8162	7	
Processed	Peaks								
Peak No	Name	Start RT (mins)	Max R (mins)	End R (mins)	TPkHe) (m\	eight % /)	Height	Area (mV.secs)	% Area
1		16.67	21.0	5 24.3	5 -7.47	258	100	1333.31	100

Figure S60. GPC of the polyethylene produced by Ni5/MAO from table 2, entry 20.

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	50257	38953	45659	50639	54687	44911	1.17216

Processed F	eaks	5
-------------	------	---

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		19.22	20.15	22.40	-29.6714	0	1366.13	100
~ ~ ~	a b a		(* *	、 .				

Figure S61. GPC of the poly(1-hexene) produced by Ni1/EASC from table 4, entry 1.

MW Avera	iges								
Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD		
1	30251	24990	30919	36742	42556	30137	1.23725		
Processe	d Peaks								
Peak No	Name	Start RT (mins)	Max R1 (mins)	End R (mins	T Pk	Height mV)	% Height	Area (mV.secs)	% Area
1		19.32	20.68	3 22.9	0 -27	7.8387	100	1904.92	100
		6.4	1 (1 1	``	1	11 1.1		c (11	4 4

Figure S62. GPC of the poly(1-hexene) produced by Ni2/EASC from table 4, entry 2.

MW Averages	
-------------	--

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	28504	22095	28521	34526	40391	27706	1.29084

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		18.87	20.27	22.75	-25.3371	100	1802.47	100

Figure S63. GPC of the poly(1-hexene) produced by Ni3/EASC from table 4, entry 3.

Peak No	Mp	Mn	Mw	Mz	Mz+	-1 M∨	PD		
1	21004	7400	17393	24938	3085	50 16296	2.35041		
Processed	Peaks								
Peak No	Name	Start RT (mins)	Max F (mins	RT End s) (m	d RT ins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		19.63	21.	07 2	5.48	-14.1266	100	1461.68	100

Figure S64. GPC of the poly(1-hexene) produced by Ni4/EASC from table 4, entry 4.

WWW Averages	MW	Averages
--------------	----	----------

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	52447	36141	44989	51505	56518	44002	1.24482

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		18.83	19.63	22.07	-50.6238	0	2716.78	100

Figure S65. GPC of the poly(1-octene) produced by Ni2/EASC from table 4, entry 6.

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	61876	46521	61356	76579	91544	59342	1.31889

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		12.55	13.37	14.82	-8.14968	100	418.152	100

Figure S66. GPC of the poly(1-octadecene) produced by Ni2/EASC from table 4, entry 7.

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	8217	5925	8127	10352	12433	7829	1.37165

Processed Peaks

Peak NO Na	(mins)	(mins)	(mins)	(mV)	% Height	(mV.secs)	% Area
1	13.92	14.73	16.22	-6.53463	100	366.765	100

Figure S67. GPC of the poly(1-octadecene) produced by Ni2/EASC from table 4, entry 8.

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	M∨	PD	
1	57093	53078	56431	59819	63187	55970	1.06317	

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		19.15	19.95	20.82	-16.0973	0	650.556	100

Figure S68. GPC spectra of the polyethylene produced by Ni2/Et₂AlCl at 25 °C for 20 mim (table s1, entry 1).

Figure S69. GPC spectra of the polyethylene produced by Ni2/Et₂AlCl at 25 °C for 40 mim (table s1, entry 2).

MW Averages

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD
1	141902	127535	138155	148506	158427	136727	1.08327

Processed Peaks

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		18.22	18.98	20.07	-24.5334	100	1107.18	100

Figure S70. GPC spectra of the polyethylene produced by Ni2/Et₂AlCl at 25 °C for 60 mim (table s1, entry 3).

08974

Peak No	Name	Start RT (mins)	Max RT (mins)	End RT (mins)	Pk Height (mV)	% Height	Area (mV.secs)	% Area
1		17.85	18.70	20.12	-24.803	100	1284.14	100

PD

172785 1.12202

Mv

Figure S71. GPC spectra of the polyethylene produced by **Ni2/Et₂AlCl** at 25 °C for 80 mim (table s1, entry 4).

Figure S72. GPC spectra of the polyethylene produced by $Ni2/Et_2AlCl$ at 25 °C for 100 mim (table s1, entry 5).

5. DSC Spectra of polymers

Figure S73. DSC spectra of the polyethylene produced by Ni2/MAO from table 1, entry 1.

Figure S74. DSC spectra of the polyethylene produced by Ni2/MMAO from table 1, entry 2.

Figure S75. DSC spectra of the polyethylene produced by Ni2/Et₂AlCl from table 1, entry 3.

Figure S76. DSC spectra of the polyethylene produced by Ni2/EASC from table 1, entry 4.

Figure S77. DSC spectra of the polyethylene produced by Ni1/MAO from table 2, entry 1.

Figure S78. DSC spectra of the polyethylene produced by Ni3/MAO from table 2, entry 3.

Figure S79. DSC spectra of the polyethylene produced by Ni4/MAO from table 2, entry 4.

Figure S80. DSC spectra of the polyethylene produced by Ni5/MAO from table 2, entry 5.

Figure S81. DSC spectra of the polyethylene produced by Ni1/MAO from table 2, entry 6.

Figure S82. DSC spectra of the polyethylene produced by Ni1/MAO from table 2, entry 7.

Figure S83. DSC spectra of the polyethylene produced by Ni2/MAO from table 2, entry 9.

Figure S84. DSC spectra of the polyethylene produced by Ni2/MAO from table 2, entry 10.

Figure S85. DSC spectra of the polyethylene produced by Ni3/MAO from table 2, entry 12.

Figure S86. DSC spectra of the polyethylene produced by Ni3/MAO from table 2, entry 13.

Figure S87. DSC spectra of the polyethylene produced by Ni3/MAO from table 2, entry 14.

Figure S88. DSC spectra of the polyethylene produced by Ni4/MAO from table 2, entry 15.

Figure S89. DSC spectra of the polyethylene produced by Ni4/MAO from table 2, entry 16.

Figure S90. DSC spectra of the polyethylene produced by Ni4/MAO from table 2, entry 17.

Figure S91. DSC spectra of the polyethylene produced by Ni5/MAO from table 2, entry 18.

Figure S92. DSC spectra of the polyethylene produced by Ni5/MAO from table 2, entry 19.

Figure S93. DSC spectra of the polyethylene produced by Ni5/MAO from table 2, entry 20.

Figure S94. DSC spectra of the poly(1-hexene) produced by Ni2/EASC from table 4, entry 2.

Figure S95. DSC spectra of the poly(1-hexene) produced by Ni3/EASC from table 4, entry 3.

Figure S96. DSC spectra of the poly(1-hexene) produced by Ni4/EASC from table 4, entry 4.

Figure S97. DSC spectra of the poly(1-octene) produced by Ni2/EASC from table 4, entry 6.

Figure S98. DSC spectra of the poly(1-octadecene) produced by Ni2/EASC from table 4, entry 7.

Figure S99. DSC spectra of the poly(1-octadecene) produced by Ni2/EASC from table 4, entry 8.

Table S3. Crysta	llographic data for complexes	Ni1 and Ni4.		
	Ni1	Ni4		
Formula	C46H40Br2N2Ni	$C_{44}H_{24}Br_2F_{12}N_2Ni$		
Formula weight	839.33	1027.18		
Temperature	210(2) K	191(2) K		
Wavelength	1.54178 A	0.71073 A		
Crystal system	Monoclinic	Monoclinic		
space group	P2(1)/c	P2(1)/c		
a (Å)	11.2778(4)	14.785(2)		
b (Å)	22.0014(7)	18.646(3)		
c (Å)	17.4636(5)	17.519(2)		
α (deg)	90	90		
β (deg)	99.651(2)	107.516(3)		
γ (deg)	90	90		
Volume(Å ³)	4271.9(2)	4605.8(11)		
Z	4	4		
Calculated density (Mg/cm ³)	1.305	1.481		
Absorption coefficient (mm ⁻¹)	3.078	2.236		
F(000)	1712	2032		
Crystal size (mm)	$0.190\times0.150\times0.090$	$0.21\times0.19\times0.12$		
θ range (deg)	3.259 to 50.000	1.44 to 26.41		
	-11≤h≤11	-9≤h≤18		
Limiting indices	-21≤k≤21	-23≤k≤23		
	-17 <u>≤</u> 1≤17	-21≤l≤21		
Reflections collected	34155	25862		
Independent reflections	4351 [R(int) = 0.0929]	9363 [R(int) = 0.0700]		
Max. and min. transmission	0.758 and 0.603	0.7752 and 0.6510		
Data / restraints / parameters	4351 / 1996 / 460	9363 / 0 / 550		
Goodness-of-fit on F^2	0.909	1.027		
Final R indices [I>2sigma(I)]	$R_1 = 0.0559, wR_2 = 0.1924$	$R_1 = 0.0729, wR_2 = 0.1956$		
R indices (all data)	$R_1 = 0.0674, wR_2 = 0.2070$	$R_1 = 0.1138, wR2 = 0.2168$		
Largest diff. peak and hole (e./Å ⁻³)	0.607 and -0.708	1.254 and -0.575		

6. Crystallographic data for complexes Ni1 and Ni4.