Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI) for Preparation of Thermoresponsive Hydrogels via Polymerizable Deep Eutectic Monomer Solvents

Yeasmin Nahar, James Horne, Vinh Truong, Alex C. Bissember and Stuart C. Thickett*

Sample	C %	Н %	N %	C/N ratio
NIPAM:ChCl	61.52	10.32	12.18	5.05
(initial ratio 3:1)				
Predicted values:				
NIPAM:ChCl 3:1	57.65	9.88	11.69	5.03
NIPAM:ChCl 10.5:1	61.54	9.77	12.14	5.07
NIPAM:AcChCl	58.84	9.68	11.15	5.27
(initial ratio 3:1)				
Predicted values:				
NIPAM:AcChCl 3:1	57.64	9.41	10.76	5.35
NIPAM:AcChCl 4:1	58.72	9.47	11.04	5.31

 Table S1. Elemental Analysis Results of Deep Eutectic Monomer Solvents

Figure S1. Thermogravimetric analysis (TGA) of choline chloride and acetylcholine chloride.

Table S2. Onset Tempe	rature and Weight Loss Da	ta from TGA Analysis.
-----------------------	---------------------------	-----------------------

Sample	Tonset	Total
	(°C)	Weight loss
		(%)
NIPAM	160	98.55
ChCl	307	89.93
NIPAM-ChCl 3:1 eutectic	236	93.91
AcChCl	222	96.06
NIPAM-AcChCl 3:1 eutectic	178	93.11

Figure S2. DSC analysis of NIPAM:ChCl 3:1 DEM systems and reproducibility of multiple heating (panel A) and cooling (panel B) loops. Heating/cooling rate = $5 \,^{\circ}$ C min⁻¹.

Figure S3. DSC analysis of NIPAM:AcChCl 3:1 DEM systems and reproducibility of multiple heating (panel A) and cooling (panel B) loops. Heating/cooling rate = $5 \text{ }^{\circ}\text{C} \text{ min}^{-1}$.

Cycle	Tonset (°C)	Mean	$T_{\rm max}(^{\circ}{\rm C})$	Mean	$\Delta H (J/g)$		
NIPAM:ChCl 3:1							
Heat 1	54.2		56.5	55.9 ± 0.6	69.2 ± 3.4		
Heat 2	53.8	53.9 ± 0.3	55.7				
Heat 3	53.6		55.6				
Cool 1	40.4		32.2				
Cool 2	39.3	39.1 ± 1.6	34.0	32.6 ± 1.4	-67.1 ± 2.5		
Cool 3	37.5		31.6				
	NIPAM:AcChCl 3:1						
Heat 1	48.2		50.6				
Heat 2	47.8	48.0 ± 0.2	50.7	50.7 ± 0.1	79.1 ± 7.6		
Heat 3	48.1		50.8				
Cool 1	15.2	15.1 ± 1.2	4.4	5.1 ± 1.1	-50.7 ± 3.0		
Cool 2	16.3		4.9				
Cool 3	13.8		6.1				

Table S3. DSC Analysis of NIPAM:ChCl 3:1 DEM systems (heating/cooling rate = 5 °C min⁻¹).

Figure S4. DSC analysis of NIPAM:ChCl 3:1 DEM systems as a function of DSC heating rate.

Figure S5a. ¹H NMR spectra a) NIPAM; b) AcChCl; c) a 3:1 mixture of NIPAM and AcChCl (all in D₂O); d) NIPAM:AcChCl DEM obtained by using a small capillary of D₂O placed in the sample.

Figure S5b. ¹H-¹H ROESY spectrum of NIPAM:AcChCl DEM.

Figure S6. ¹H DOSY NMR spectra of (top) NIPAM:ChCl DEM; (middle) NIPAM:AcChCl DEM; (bottom) NIPAM and ChCl dissolved in D₂O.

Figure S7. ATR-FTIR spectra of poly(NIPAM-co-BIS) hydrogels prepared in both DEMs and water.

The bands appearing at 2850 cm⁻¹ and 2900 cm⁻¹ are assigned to C–H stretching vibrations. The amide group N–H bending peak is also observed at 1550 cm⁻¹. The broad band at 3240 cm⁻¹ is consistent with O–H and N–H stretching vibrations of carboxyl and amide groups. Additionally, the broad intense band in the range 800–1300 cm⁻¹ can be assigned to C–O stretching and C–H bending vibrations.

Sample	T _{onset} (°C)	Weight loss <i>T</i> < 200 °C (%)	Weight loss 200 <i>T</i> < 600 °C (%)
BIS 2% / DEM	346.9	10.48	80.68
BIS 6 % / DEM	346.3	7.87	86.87
BIS 2 % / water	362.2	2.45	92.73
BIS 6 % / water	345.3	4.88	91.72

 Table S4. TGA Analysis of PNIPAM-BIS Hydrogels.

Figure S8. Differential TGA Analysis of PNIPAM-BIS Hydrogels.

Figure S9. Plot of ln(1/(1-conversion) versus time for the polymerization of NIPAM in both a NIPAM:ChCl DEM system as well as in water.

Figure S10. Photographs of freeze-dried hydrogels prepared by different methods.

Figure S11. Degree of swelling (S) versus temperature for polyNIPAM-based gels prepared from ChCl DEMs (filled symbols) or water (open symbols). The crosslinker concentration was either 2 % (squares) or 6 % (circles) relative to NIPAM. Top panel: BIS as crosslinker; Bottom panel: PEGDA as crosslinker.

Figure S12. Rheological analysis of poly(NIPAM-co-BIS) gels swollen with water. (Top left): amplitude sweep of gels prepared from ChCl DEM. (Top right): amplitude sweep of gels prepared from water. (Bottom left): Frequency sweep comparison of the two gels. (Bottom right): Complex viscosity of the two gels as a function of temperature.

Flory-Rehner Analysis:

Flory-Rehner theory was used to determine the average molecular weight between crosslinks (M_c) based on the equilibrium degree of swelling (S_{eq}) of the hydrogels prepared in this work. The Flory-Rehner equation for an affine network model can be stated as:

$$\ln(1-\phi) + \phi + \chi \phi^2 = \frac{d_p V_s}{M_c} \left[\left(\frac{\phi}{2\phi_0}\right) - \left(\frac{\phi}{\phi_0}\right)^{1/3} \right]$$

Where ϕ = polymer volume fraction in the gel, χ the Flory-Huggins parameter between the polymer and solvent, d_p the density of polymer, V_s the molar volume of solvent, M_c the average molecular weight between crosslinks, and ϕ_0 the polymer volume fraction of the gel in a reference state (see below discussion).

The following temperature and concentration dependence of χ was used:¹

$$\chi = \frac{1}{2} - A\left(1 - \frac{\theta}{T}\right) + C\phi + D\phi^2$$

Where θ is the theta temperature for NIPAM (303.6 K), and *A*, *C* and *D* are coefficients. Values of *A* = -2, *C* = 0.32, *D* = 0.24 were used based on recently published values,¹ however we acknowledge there are numerous functional forms (and values of these coefficients) reported in the literature.

The volume fraction of polymer ϕ was calculated from equilibrium swelling values via the following relation:

$$\phi = \frac{1}{1 + \frac{d_p}{d_s} S_{eq}}$$

Where d_p and d_s are the densities of polymer and solvent respectively. The values of d_p and d_s used in this work for polyNIPAM and water were 1.1 and 1.0 g mL⁻¹ respectively.

The volume fraction of polymer for each gel at different temperatures studied, in addition to the temperature and concentration-dependent value of the Flory-Huggins parameter, were used to determine the value of M_c that provided the best fit to experimental data. The value of M_c was then used to calculate the effective cross-linking density q_{eff} , which is defined as M_0/M_c where M_0 is the molar mass of a NIPAM repeat unit (113 Da).

There is significant debate regarding the value and interpretation of ϕ_0 ;² numerous authors define this quantity as the polymer volume fraction during gel preparation, however Lopez and Richtering¹ show that this often gives poor fit to data and ϕ_0 is typically much smaller (2 – 6 % of this value). In this work, ϕ_0 was allowed to be a free parameter in the fit to experimental data, and the following values were obtained:

Gel	Φ_0
Water	0.020
ChCl DEM	0.056
AcChCl DEM	0.073

For the gel prepared in water, a value of $\phi_0 = 0.020$ is comparable to the work of Lopez and Richtering,¹ whereas the DEM-based gels present higher ϕ_0 values, indicative of their different method of preparation.

Method of gel preparation	Temp (°C)	S _{eq} ^a	$M_{ m c}({ m Da})^{ m b}$	$q_{\rm eff}^{\rm c}$
ChCl DEM	22	6.29 ± 0.17	4165 ± 100	0.0273
	40	1.64 ± 0.05	4103 ± 190	
Watan	22	21.69 ± 0.53	22620 ± 0.00	4.82 × 10 ⁻³
water	40	3.65 ± 0.10	23020 ± 980	

Table S5. Swelling properties of poly(NIPAM-co-PEGDA) gels when immersed in water.

¹ Lopez, C.G. and Richtering, W. Soft Matter, 2017, 13, 8271

² Quesada-Pérez, M. et al, Soft Matter, 2011, 7, 10536.